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This talk

n Given a symmetric key cipher, how hardware 
designer implement and optimize it
p For practical application:

• With higher efficiency, encryption/decryption unified, 
on-the-fly key scheduling, without block-wise pipelining

p Case study using AES!

n Disclaimer
p Some modern lightweight ciphers are already optimized 

and they avoid some concerns in implementing AES
p But I still believe that optimization of AES 

implementation can be feedbacked to cipher designs
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Hardware architectures of block cipher
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For practical hardware implementation

n Block-chaining modes have been widely deployed
p CBC, CMAC, and CCM…

n (Un)Parallelizability: Issue on block-wise pipelining
p AES hardware achieves 53Gbps, but works only for 

parallelizable modes [Mathew+ JSSC2011]
p Higher throughput ≠ Lower latency

n Both encryption and decryption operations

n Importance of on-the-fly key scheduling
p Off-the-fly key scheduling requires additional memories 

to store expanded keys
p Latency for calculating round keys is nonnegligible if we 

use AES with key-tweakable modes
6



Outline

n Introduction

n Related works

n Optimized architecture

n Optimization of linear functions over tower-field

n Performance evaluation

n Concluding remarks
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Conventional architecture 1/2 [Lutz+, CHES 2002]

n Enc and Dec datapaths with additional selectors
p Overhead of selectors for unification is nontrivial
p False paths appear

8www.chesworkshop.org/ches2002/presentations/Lutz.pdf



Conventional architecture 2/2 [Satoh+, AC 2001]

n Unify each pair of operation and its inverse
p RoundKey requires InvMixColumns
p Some MUXs in unified operations

p Long critical path
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Tower-field implementation

n Inversion should be performed over tower-field
p Tower-field inversion is more efficient than direct 

mapping (e.g., table-lookup)

n Two types of tower-field implementation
p Type-I: only inversion is performed over tower-field
p Type-II: all operations are performed over tower-field
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Overall architecture

n Round-based architecture
n On-the-fly key scheduler
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Round function part

n Compress encryption and decryption datapaths by 
register-retiming and operation-reordering
p Unify inversion circuits in encryption and decryption

• Without any additional selectors (i.e., overheads)

p Merge linear operations to reduce gates and critical delay
• Affine/InvAffine and MixColumns/InvMixColumns
• At most one linear operation for a round

n Type-II tower-field implementation
p Isomorphic mappings are performed at data I/O
p Lower-area tower-field (Inv)Affine and (Inv)MixColumns
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Resister-retiming and operation-reordering
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Key tricks (of decryption)
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Key tricks (of decryption)
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n Decompose InvSubByte to InvAffine and Inversion

n Register-retiming to initially perform inversion in 
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Key tricks (of decryption)
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n Merge linear operations as Unified affine-1

p InvAffine and InvMixColumns
n Distinct AddRoundKey to avoid additional selectors or 

InvMixColumns for RoundKey

AddRoundKey
InvShiftRows

AddRoundKey
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InvShiftRows
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Resulting datapath
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Overall architecture

n Round-based architecture
n On-the-fly key scheduler
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Key scheduling part

n Round key generator is dominant
p Unify encryption and decryption datapaths
p Shorten critical delay than round function part by   

NOT unifying some XOR gates
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Coming back to round function part

n Major components
p Inversion
p Linear operations
p Bit-parallel XOR
p Selectors
p (Inv)ShiftRows

n Performance depends on constructions of 
inversion and linear operations
p Inversion: Use state-of-the-art adoptable one
p Linear operations: Depends on XOR matrices 22



Multiplicative-offset

n Increase variation of construction of XOR matrices
p To find optimal XOR matrices with lower HWs

n Multiply offset value c to intermediate value di,j
(r)

and store cdi,j
(r) into register

p Multiplication with fixed value is XOR matrix operation
p c is taken from GF(28) excluding 0
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Multiplicative-offset
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Proposed encryption flow (simplified)

Multiply c Inversion

Unified Affine

Iso. Mapping-1

Iso. mapping
Multiply c2

Multiply c-1

Plaintext

cdi,j
(1)

cdi,j
(r)

cdi,j
(r+1)

cdi,j
(11)

Ciphertext

n Increase variation of construction of XOR matrices
p To find optimal XOR matrices with lower HWs

n Multiply offset value c to intermediate value di,j
(r)

and store cdi,j
(r) into register

p Multiplication with fixed value is XOR matrix operation
p c is taken from GF(28) excluding 0



n Increase variation of construction of XOR matrices
p To find optimal XOR matrices with lower HWs

n Multiply offset value c to intermediate value di,j
(r)

and store cdi,j
(r) into register

p Multiplication with fixed value is XOR matrix operation
p c is taken from GF(28) excluding 0

Multiplicative-offset
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n Synthesized proposed and conventional archs.
p Logic synthesis: Design Compiler
p Technology: Nangate 45-nm Open Cell Library

n 51—57% higher efficient than conventional ones
p Multiplicative-offset (MO) improves efficiency by 7—9%

Performance comparison
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Area (GE) Latency 
(ns)

Throughput 
(Gbps)

Efficiency
(Kbps/GE)

Satoh et al. 16,628.67 24.97 5.64 339.10
Lutz et al. 28,301.33 16.20 7.90 279.18
Liu et al. 15,335.67 29.70 4.74 309.13
Mathew et al. 21,429.33 30.80 4.57 213.33
This work w/o MO 18,013.00 16.28 8.65 480.49
This work w/ MO 17,368,67 15.84 8.89 511.78



Evaluation of power/energy consumption

n Gate-level timing simulation with back-annotation 

for estimating power consumption

p With regarding glitch-effects

n Our architecture achieved lowest power/energy

p MO achieves further reduction by 7—24%
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Power [uW] @ 100 MHz PL product
Satoh et al. 902 22,523

Lutz et al. 735 11,907

Liu et al. 1,010 29,997

Mathew et al. 1,390 42,812

This work w/o MO 569 9,263

This work w/ MO 465 7,366

Power consumption and power-latency product at encryption



Encryption only architecture

n Designed encryption-only hardware based on 
our philosophy 
p Compared with representative open-source IP 

(SASEBO IP)  and state-of-the-art one [ARITH 2016]

n Our architecture is 58—64% higher efficient
p Also advantageous in power/energy consumption
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Area
(GE)

Latency 
(ns)

Thru
(Gbps)

Thru/GE Power
(uW)

PL
product

SASEBO 
IP

Table 23,085.00 11.64 12.00 519.66 352 4,097
Comp 11,431.67 23.04 6.06 530.16 513 11,820

ARITH 
2016

Type-I 12,108.33 23.87 5.90 487.16 655 14,266
Type-II 13,249.33 21.78 6.46 487.92 755 18,022

This work 12,127,00 13.97 10.08 831.10 279 3,898



Massages take away

n Round-based implementation of block ciphers 
may be essential for evaluating their performance
p Should be conscious of mode-of-operations, 

applications, etc.
p Optimizing round datapath is valuable and essential

n Feedback to block cipher design?
p Optimized MDS matrices for cryptanalyses ≠ optimized 

for implementation (area and latency)
• But it can be optimized at implementation for 

implementation
p Inversion-based 8-bit Sbox makes many spaces for 

architectural/design optimization
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