
Tohoku University
Rei Ueno

Hardware Implementation of Block Cipher:
Case Study Using AES

Acknowledgments

Naofumi Homma, Tohoku Univ.
Takafumi Aoki, Tohoku Univ.
Sumio Morioka, Interstellar technologies, Inc.
Noriyuki Miura, Kobe Univ.
Kohei Matsuda, Kobe Univ.
Makoto Nagata, Kobe Univ.
Shivam Bhasin, NTU
Yves Mathieu, Telecom ParisTech
Tarik Graba, Telecom ParisTech
Jean-Luc Danger, Telecom ParisTech

2

This talk

n Given a symmetric key cipher, how hardware
designer implement and optimize it
p For practical application:

• With higher efficiency, encryption/decryption unified,
on-the-fly key scheduling, without block-wise pipelining

p Case study using AES!

n Disclaimer
p Some modern lightweight ciphers are already optimized

and they avoid some concerns in implementing AES
p But I still believe that optimization of AES

implementation can be feedbacked to cipher designs

3

Hardware architectures of block cipher

4
Time for one block encryption

Area Round-
based

Serialized

Un-
rolled

Resource
sharing

Datapath
replication

Hardware architectures of block cipher

5
Time for one block encryption

Area Round-
based

Byte-
serial

Un-
rolled

Resource
sharing

Datapath
replication

Efficient
hardware

Pipelining

Datapath
optimization

For practical hardware implementation

n Block-chaining modes have been widely deployed
p CBC, CMAC, and CCM…

n (Un)Parallelizability: Issue on block-wise pipelining
p AES hardware achieves 53Gbps, but works only for

parallelizable modes [Mathew+ JSSC2011]
p Higher throughput ≠ Lower latency

n Both encryption and decryption operations

n Importance of on-the-fly key scheduling
p Off-the-fly key scheduling requires additional memories

to store expanded keys
p Latency for calculating round keys is nonnegligible if we

use AES with key-tweakable modes
6

Outline

n Introduction

n Related works

n Optimized architecture

n Optimization of linear functions over tower-field

n Performance evaluation

n Concluding remarks

7

Conventional architecture 1/2 [Lutz+, CHES 2002]

n Enc and Dec datapaths with additional selectors
p Overhead of selectors for unification is nontrivial
p False paths appear

8www.chesworkshop.org/ches2002/presentations/Lutz.pdf

Conventional architecture 2/2 [Satoh+, AC 2001]

n Unify each pair of operation and its inverse
p RoundKey requires InvMixColumns
p Some MUXs in unified operations

p Long critical path

9

Tower-field implementation

n Inversion should be performed over tower-field
p Tower-field inversion is more efficient than direct

mapping (e.g., table-lookup)

n Two types of tower-field implementation
p Type-I: only inversion is performed over tower-field
p Type-II: all operations are performed over tower-field

10

Inversion
(S-box)

MixColumns
InvMixColumns

Type-I Good Good

Type-II Better Bad

Outline

n Introduction

n Related works

n Optimized architecture

n Optimization of linear functions over tower-field

n Performance evaluation

n Concluding remarks

11

Overall architecture

n Round-based architecture
n On-the-fly key scheduler

12

Round function part

Key scheduling part

Ciphertext/Plaintext

Plaintext/Ciphertext Initial key

Round function part

n Compress encryption and decryption datapaths by
register-retiming and operation-reordering
p Unify inversion circuits in encryption and decryption

• Without any additional selectors (i.e., overheads)

p Merge linear operations to reduce gates and critical delay
• Affine/InvAffine and MixColumns/InvMixColumns
• At most one linear operation for a round

n Type-II tower-field implementation
p Isomorphic mappings are performed at data I/O
p Lower-area tower-field (Inv)Affine and (Inv)MixColumns

13

Resister-retiming and operation-reordering

14Encryption Decryption
Original Proposed Original Proposed

Key tricks (of decryption)

15

AddRoundKey InvSubBytes
InvShiftRows

AddRoundKey
InvMixColumns

InvSubBytes
InvShiftRows

AddRoundKey

Pre-round op. Round op. Final op.

Ciphertext

PlaintextData register

Data register

Data register

Data register

Key tricks (of decryption)

16

n Decompose InvSubByte to InvAffine and Inversion

n Register-retiming to initially perform inversion in

round operations

AddRoundKey

InvShiftRows

AddRoundKey

InvMixColumns

InvShiftRows

AddRoundKey

Pre-round op. Round op. Final op.

Ciphertext

PlaintextData register

Data register Data register

InvAffine

Inversion Inversion

Data register

InvAffine

Key tricks (of decryption)

17

n Merge linear operations as Unified affine-1

p InvAffine and InvMixColumns
n Distinct AddRoundKey to avoid additional selectors or

InvMixColumns for RoundKey

AddRoundKey
InvShiftRows

AddRoundKey
Unified affine-1

InvShiftRows
AddRoundKey

Pre-round op. Round op. Final op.

Ciphertext

PlaintextData register

Data register Data register

InvAffine
Inversion Inversion

Data register

Resulting datapath

18

Unified inversion
without selector Disable inactive path

At most one linear
operation for round

Only one
4:1 selector

Overall architecture

n Round-based architecture
n On-the-fly key scheduler

19

Round function part

Key scheduling part

Ciphertext/Plaintext

Plaintext/Ciphertext Initial key

Key scheduling part

n Round key generator is dominant
p Unify encryption and decryption datapaths
p Shorten critical delay than round function part by

NOT unifying some XOR gates

20

Not unified
XOR gates

Unified
components

Outline

n Introduction

n Related works

n Optimized architecture

n Optimization of linear functions over tower-field

n Performance evaluation

n Concluding remarks

21

Coming back to round function part

n Major components
p Inversion
p Linear operations
p Bit-parallel XOR
p Selectors
p (Inv)ShiftRows

n Performance depends on constructions of
inversion and linear operations
p Inversion: Use state-of-the-art adoptable one
p Linear operations: Depends on XOR matrices 22

Multiplicative-offset

n Increase variation of construction of XOR matrices
p To find optimal XOR matrices with lower HWs

n Multiply offset value c to intermediate value di,j
(r)

and store cdi,j
(r) into register

p Multiplication with fixed value is XOR matrix operation
p c is taken from GF(28) excluding 0

23

Pre-round Round Post-round
Plaintext

di,j
(1)

di,j
(r)

Inversion

Unified Affine

di,j
(r+1)

Iso. Mapping-1

di,j
(11)

Ciphertext

Iso. mapping

Original encryption flow (simplified)

Multiplicative-offset

24

Pre-round Round Post-round

Proposed encryption flow (simplified)

Multiply c Inversion

Unified Affine

Iso. Mapping-1

Iso. mapping
Multiply c2

Multiply c-1

Plaintext

cdi,j
(1)

cdi,j
(r)

cdi,j
(r+1)

cdi,j
(11)

Ciphertext

n Increase variation of construction of XOR matrices
p To find optimal XOR matrices with lower HWs

n Multiply offset value c to intermediate value di,j
(r)

and store cdi,j
(r) into register

p Multiplication with fixed value is XOR matrix operation
p c is taken from GF(28) excluding 0

n Increase variation of construction of XOR matrices
p To find optimal XOR matrices with lower HWs

n Multiply offset value c to intermediate value di,j
(r)

and store cdi,j
(r) into register

p Multiplication with fixed value is XOR matrix operation
p c is taken from GF(28) excluding 0

Multiplicative-offset

25

Pre-round Round Post-round
Plaintext

cdi,j
(1)

cdi,j
(r)

Inversion

Merged
Unified Affine

cdi,j
(r+1)

Merged mapping-1

cdi,j
(11)

Ciphertext

Merged mapping

Original encryption flow (simplified)

Reduce HW of XOR matrices
for linear operations by 10%

n Synthesized proposed and conventional archs.
p Logic synthesis: Design Compiler
p Technology: Nangate 45-nm Open Cell Library

n 51—57% higher efficient than conventional ones
p Multiplicative-offset (MO) improves efficiency by 7—9%

Performance comparison

26

Area (GE) Latency
(ns)

Throughput
(Gbps)

Efficiency
(Kbps/GE)

Satoh et al. 16,628.67 24.97 5.64 339.10
Lutz et al. 28,301.33 16.20 7.90 279.18
Liu et al. 15,335.67 29.70 4.74 309.13
Mathew et al. 21,429.33 30.80 4.57 213.33
This work w/o MO 18,013.00 16.28 8.65 480.49
This work w/ MO 17,368,67 15.84 8.89 511.78

Evaluation of power/energy consumption

n Gate-level timing simulation with back-annotation

for estimating power consumption

p With regarding glitch-effects

n Our architecture achieved lowest power/energy

p MO achieves further reduction by 7—24%
27

Power [uW] @ 100 MHz PL product
Satoh et al. 902 22,523

Lutz et al. 735 11,907

Liu et al. 1,010 29,997

Mathew et al. 1,390 42,812

This work w/o MO 569 9,263

This work w/ MO 465 7,366

Power consumption and power-latency product at encryption

Encryption only architecture

n Designed encryption-only hardware based on
our philosophy
p Compared with representative open-source IP

(SASEBO IP) and state-of-the-art one [ARITH 2016]

n Our architecture is 58—64% higher efficient
p Also advantageous in power/energy consumption

28

Area
(GE)

Latency
(ns)

Thru
(Gbps)

Thru/GE Power
(uW)

PL
product

SASEBO
IP

Table 23,085.00 11.64 12.00 519.66 352 4,097
Comp 11,431.67 23.04 6.06 530.16 513 11,820

ARITH
2016

Type-I 12,108.33 23.87 5.90 487.16 655 14,266
Type-II 13,249.33 21.78 6.46 487.92 755 18,022

This work 12,127,00 13.97 10.08 831.10 279 3,898

Massages take away

n Round-based implementation of block ciphers
may be essential for evaluating their performance
p Should be conscious of mode-of-operations,

applications, etc.
p Optimizing round datapath is valuable and essential

n Feedback to block cipher design?
p Optimized MDS matrices for cryptanalyses ≠ optimized

for implementation (area and latency)
• But it can be optimized at implementation for

implementation
p Inversion-based 8-bit Sbox makes many spaces for

architectural/design optimization
29

References

n R. Ueno et al., “A High Throughput/Gate AES Hardware
Architecture by Compressing Encryption and Decryption
Datapaths—Toward efficient CBC-Mode Implementation,”
CHES 2016.

n R. Ueno et al., “High Throughput/Gate AES Hardware
Architectures Based on Datapath Compression,” IEEE
Trans. Comput., 2019. (Early Access)

30

