Cryptanalysis of Reduced Gimli-Hash

Fukang Liu^{1,3}, Takanori Isobe^{2,3}, Willi Meier⁴

¹East China Normal University, China ²NICT, Japan ³University of Hyogo, Japan ⁴FHNW, Windisch, Switzerland

Dec. 13, 2019

 \Diamond NIST Lightweight Cryptography Standardization process

- Start: 2013
- Call For Submissions: 2018
- Public (the first round): April 18, 2019
- Number (the first round): 56 candidates
- Public (the second round): Aug. 31, 2019
- Number (the second round): 32 candidates

 \Diamond Third-party cryptanalysis is essential

Target

► Gimli-Hash (the hash scheme based on Gimli)

- Designers
 - Daniel J. Bernstein
 - Stefan Kölbl
 - Stefan Lucks
 - Pedro Maat Costa Massolino
 - Florian Mendel
 - Kashif Nawaz
 - Tobias Schneider
 - Peter Schwabe
 - François-Xavier Standaert
 - Yosuke Todo
 - Benoît Viguier

Description of Gimli

The Gimli state (3×4 two-dimensional array):

<i>s</i> _{0,0}	<i>s</i> _{0,1}	s _{0,2}	s _{0,3}
<i>s</i> _{1,0}	<i>s</i> _{1,1}	<i>s</i> _{1,2}	<i>s</i> _{1,3}
s _{2,0}	s _{2,1}	s _{2,2}	s _{2,3}

Figure: The Gimli state, where $S_{i,j} \in F_2^{32}$

The sequence of operations for 24-round permutation:

$$(SP \rightarrow S_SW \rightarrow AC) \rightarrow (SP) \rightarrow (SP \rightarrow B_SW) \rightarrow (SP)$$

$$\rightarrow (SP \rightarrow S_SW \rightarrow AC) \rightarrow (SP) \rightarrow (SP \rightarrow B_SW) \rightarrow (SP)$$

$$\rightarrow (SP \rightarrow S_SW \rightarrow AC) \rightarrow (SP) \rightarrow (SP \rightarrow B_SW) \rightarrow (SP)$$

$$\rightarrow (SP \rightarrow S_SW \rightarrow AC) \rightarrow (SP) \rightarrow (SP \rightarrow B_SW) \rightarrow (SP)$$

$$\rightarrow (SP \rightarrow S_SW \rightarrow AC) \rightarrow (SP) \rightarrow (SP \rightarrow B_SW) \rightarrow (SP)$$

$$\rightarrow (SP \rightarrow S_SW \rightarrow AC) \rightarrow (SP) \rightarrow (SP \rightarrow B_SW) \rightarrow (SP)$$

The Nonlinear Operation: SP

SP-Box:
$$F_2^{32\times3} \rightarrow F_2^{32\times3}$$
:
Input: $(IX, IY, IZ) \in F_2^{32\times3}$
Output: $(OX, OY, OZ) \in F_2^{32\times3}$

Specification of SP:

$$\begin{array}{rcl} IX &\leftarrow & IX \lll 24 \\ IY &\leftarrow & IY \lll 9 \\ OZ &\leftarrow & IX \oplus (IZ \ll 1) \oplus (IY \wedge IZ) \ll 2 \\ OY &\leftarrow & IY \oplus IX \oplus (IX \vee IZ) \ll 1 \\ OX &\leftarrow & IZ \oplus IY \oplus (IX \wedge IY) \ll 3 \end{array}$$

The Linear Operation: S_SW and B_SW

Small-Swap (S_SW) & Big-Swap (B_SW)

Figure: Illustration of Small-Swap and Big-Swap

Illustration of 1-Round Permutation

Figure: Illustration of 1-round permutation

Gimli-Hash

Figure: The process to compress the message

Generic Preimage Attack Framework

Figure: The generic preimage attack framework

Time: 2¹²⁸ Memory: 2¹²⁸

Ideas for Preimage Attacks on Reduced Gimli-Hash

- Step 1: Finding a valid capacity part. Find a valid value of *C* to match H_1 in less than 2^{128} time.
- Step 2: **Choose random values.** Choose a random value for M_3 and M_4 and compute backward to obtain C_2 .
- Step 3: **Matching the capacity part.** Exhaust all the 2^{256} possible values of $M_0 || M_1$ to match the 256-bit C_2 in less than 2^{128} time.

It is expected that Step 2 is carried out only once.

Property

If $(IY \ll 9) \land 0x1fffffff = 0$, OX is irrelevant to IX.

Property

Given (IY, IZ, OX), the probability Pr that (IY, IZ, OX) is a potentially valid tuple without knowing IX is $2^{-3} \times (1 - 0.25)^{29} \approx 2^{-15.5}$.

Property

Given (OZ, IY, IZ), (IX, OX, OY) is fully determined. Moreover, a random tuple (IY, IZ, OY, OZ) is valid with probability 2^{-32} .

Property

Given (OZ, OY, IX), it is a valid tuple with probability 2^{-1} . Once it is a valid tuple, (OX[30 ~ 0], IY, IZ[30 ~ 0]) can be fully determined.

Property

Suppose the input to an SP-box is (X_0, Y_0, Z_0) and the corresponding output is (X_1, Y_1, Z_1) . Moreover, suppose the output of the SP-box is (X_2, Y_2, Z_2) when the input is (X'_1, Y_1, Z_1) , where X'_1 is a randomly chosen value. If given a random value of (Y_0, Z_0, Y_2, Z_2) , the pair (X_0, X'_1) can be recovered with $2^{10.4}$ time complexity.

Property

$$SP(0,0,0) = (0,0,0)$$

Property

Given (OY, OZ, IZ), IY can be recovered by solving a linear equation system of size 32.

Attack Types

Collision attack: 3/4/5/6 rounds

Semi-free-start collision attack: 6 rounds

Preimage attack: 2/3/4/5 rounds

$$\begin{array}{ll} (\mathrm{SP} \rightarrow \mathrm{S_SW} \rightarrow \mathrm{AC}) \rightarrow (\mathrm{SP}) \rightarrow (\mathrm{SP} \rightarrow \mathrm{B_SW}) \rightarrow (\mathrm{SP}) \\ \rightarrow & (\mathrm{SP} \rightarrow \mathrm{S_SW} \rightarrow \mathrm{AC}) \rightarrow (\mathrm{SP}) \rightarrow (\mathrm{SP} \rightarrow \mathrm{B_SW}) \rightarrow (\mathrm{SP}) \\ \rightarrow & (\mathrm{SP} \rightarrow \mathrm{S_SW} \rightarrow \mathrm{AC}) \rightarrow (\mathrm{SP}) \rightarrow (\mathrm{SP} \rightarrow \mathrm{B_SW}) \rightarrow (\mathrm{SP}) \\ \rightarrow & (\mathrm{SP} \rightarrow \mathrm{S_SW} \rightarrow \mathrm{AC}) \rightarrow (\mathrm{SP}) \rightarrow (\mathrm{SP} \rightarrow \mathrm{B_SW}) \rightarrow (\mathrm{SP}) \\ \rightarrow & (\mathrm{SP} \rightarrow \mathrm{S_SW} \rightarrow \mathrm{AC}) \rightarrow (\mathrm{SP}) \rightarrow (\mathrm{SP} \rightarrow \mathrm{B_SW}) \rightarrow (\mathrm{SP}) \\ \rightarrow & (\mathrm{SP} \rightarrow \mathrm{S_SW} \rightarrow \mathrm{AC}) \rightarrow (\mathrm{SP}) \rightarrow (\mathrm{SP} \rightarrow \mathrm{B_SW}) \rightarrow (\mathrm{SP}) \\ \rightarrow & (\mathrm{SP} \rightarrow \mathrm{S_SW} \rightarrow \mathrm{AC}) \rightarrow (\mathrm{SP}) \rightarrow (\mathrm{SP} \rightarrow \mathrm{B_SW}) \rightarrow (\mathrm{SP}). \end{array}$$

Figure: Finding a valid capacity part using Property 4

$$\begin{aligned} &(s_{1,0}, s_{2,0}, s_{1,1}, s_{2,1}, d_{1,0}, d_{2,0}, d_{1,1}, d_{2,1}) \Rightarrow (b_{0,0}, b_{0,1}, b_{0,2}, b_{0,3}) \\ &(d_{1,2}, d_{2,2}) \Rightarrow (d_{1,2}, d_{2,2}, g_{0,2}, g_{0,3}[0, 1, \dots, 30]) (\text{Total} : 2^{31}) \\ &(d_{1,3}, d_{2,3}) \Rightarrow (d_{1,3}, d_{2,3}, g_{0,2}[0, 1, \dots, 30], g_{0,3}) (\text{Total} : 2^{31}) \end{aligned}$$

Figure: Finding a valid capacity part using Property 4

$$\begin{aligned} &(s_{1,0}, s_{2,0}, s_{1,1}, s_{2,1}, d_{1,0}, d_{2,0}, d_{1,1}, d_{2,1}) \Rightarrow (b_{0,0}, b_{0,1}, b_{0,2}, b_{0,3}) \\ &(d_{1,2}, d_{2,2}) \Rightarrow (d_{1,2}, d_{2,2}, g_{0,2}, g_{0,3}[0, 1, \cdots, 30]) (\text{Total} : 2^{31}) \\ &(d_{1,3}, d_{2,3}) \Rightarrow (d_{1,3}, d_{2,3}, g_{0,2}[0, 1, \cdots, 30], g_{0,3}) (\text{Total} : 2^{31}) \end{aligned}$$

Figure: Finding a valid capacity part using Property 4

$$\begin{aligned} &(s_{1,0}, s_{2,0}, s_{1,1}, s_{2,1}, d_{1,0}, d_{2,0}, d_{1,1}, d_{2,1}) \Rightarrow (b_{0,0}, b_{0,1}, b_{0,2}, b_{0,3}) \\ &(d_{1,2}, d_{2,2}) \Rightarrow (d_{1,2}, d_{2,2}, g_{0,2}, g_{0,3}[0, 1, \cdots, 30]) (\text{Total} : 2^{31}) \\ &(d_{1,3}, d_{2,3}) \Rightarrow (d_{1,3}, d_{2,3}, g_{0,2}[0, 1, \cdots, 30], g_{0,3}) (\text{Total} : 2^{31}) \end{aligned}$$

Practical Example for 3-Round Collision Attack

Table: Four-block message pair for full-state collision of 3-round Gimli-Hash

M ₀	0xb28d37cb	0xf45c55d6	0xde66f7c3	0x311b4daf
M ₁	0xff2ecb4b	0xad17efea	0x72cd23ee	0xd9b8184
M ₂	0xe6c17a12	0x4e6b8149	0x6bcf4f78	0xb2bb53c3
M ₃	0x41dc5ce8	0x556eee8c	0xe2a8eec	0xc6f2b830
M' ₀	0xb28d37cb	0xf45c55d6	0x6385d8fc	0x2c337f96
M ^ĭ ₁	0xe2d9e2fb	0xd86356a7	0xb6e4ad39	0x23205c31
M'2	0x1ded3fee	0xc29968a4	0x3a53f26	0x8e721abb
M ₃	0xa7604db7	0x271cc14a	0xe2a8eec	0xc6f2b830
	0xb058f51	0x7bdae866	0x9d91e603	0x2990292f
Full-state Value	0x3fc4504a	0x72dcd367	0xf28ddd2f	0x68af4c32
	0x28015655	0x7c507696	0x5f998b7f	0xb8638e53

Model the Collision Attack on 6-Round Gimli-Hash

Main idea

Construct a model to describe the value transitions and difference transitions simultaneously.

Step 1: Construct the model to describe the difference transitions.
Step 2: Construct the model to describe the value transitions.
Step 3: Construct the model to connect the value transitions and difference transitions.

Difference-Value Connection via Nonlinear Operations

$$a[2] = a[0] \wedge a[1].$$

Table: The possible patterns for AND operation

<i>a</i> [0]	<i>a</i> [1]	Δ <i>a</i> [0]	∆ <i>a</i> [1]	∆ <i>a</i> [2]
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

And-Model

Target : $a[2] = a[0] \wedge a[1]$. $-a[0] - a[1] - \Delta a[1] + \Delta a[2] + 2 \ge 0$ $a[0] - a[1] - \Delta a[1] - \Delta a[2] + 2 \ge 0 \ -a[0] + a[1] - \Delta a[0] - \Delta a[2] + 2 \ge 0$ $a[0] + \Delta a[0] - \Delta a[2] > 0$ $a[0] + a[1] - \Delta a[0] - \Delta a[1] + \Delta a[2] + 1 \ge 0$ $\Delta a[0] + \Delta a[1] - \Delta a[2] > 0$ $a[1] + \Delta a[1] - \Delta a[2] > 0$ $-a[1] - \Delta a[0] + \Delta a[1] + \Delta a[2] + 1 \ge 0$ $-a[0] + \Delta a[0] - \Delta a[1] + \Delta a[2] + 1 \ge 0$

(1)

Difference-Value Connection via Nonlinear Operations

 $a[2] = a[0] \lor a[1].$

Table: The possible patterns for OR operation

<i>a</i> [0]	<i>a</i> [1]	Δ <i>a</i> [0]	∆ <i>a</i> [1]	∆ <i>a</i> [2]
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

OR-Model

$$\begin{array}{rl} \mathrm{Target}: & a[2] = a[0] \lor a[1]. \\ & -a[1] + \Delta a[1] - \Delta a[2] + 1 \geq 0 \\ & -a[0] + \Delta a[0] - \Delta a[2] + 1 \geq 0 \\ & a[1] - \Delta a[0] + \Delta a[0] - \Delta a[1] + \Delta a[2] \geq 0 \\ & a[0] + \Delta a[0] - \Delta a[1] + \Delta a[2] \geq 0 \\ & a[0] + a[1] - \Delta a[1] + \Delta a[2] \geq 0 \\ & \Delta a[0] + \Delta a[1] - \Delta a[2] \geq 0 \\ & \Delta a[0] - a[1] - \Delta a[0] - \Delta a[2] + 2 \geq 0 \\ & -a[0] - a[1] - \Delta a[0] - \Delta a[1] + \Delta a[2] + 3 \geq 0 \\ & -a[0] + a[1] - \Delta a[1] - \Delta a[2] + 2 \geq 0 \end{array}$$

(2)

- Usage 1: Check existing differential trails. (Validity Check)
- Usage 2: Search colliding message pairs directly. (Search Valid Trails)

Results:

- The official 12-round trail is invalid in the Gimli document.
- The 6-round trail for collision attack is invalid in https://eprint.iacr.org/2019/1115.

Searching Semi-Free-Start(SFS) Colliding Message Pairs for 6-Round Gimli-Hash

Figure: Search a colliding message pair for 6-round Gimli-Hash

The SFS Colliding Message Pair

Table: The conforming message pair for the 6-round differential characteristic

The input state S ⁰					
0xff792f16	0x9a757bef	0xff792f16	0x9a757bef		
0x37feedd1	0x0d8080e8	0x37feedd1	0x0d8080e8		
0xaca93960	0x88cda05b	0xaca93960	0x88cda05b		
	The input state	$S'^0(S^0\oplus\Delta S^0)$)		
0xff792f16	0xe6591fc5	0xff792f16	0xe6591fc5		
0x37feedd1	0x0d8080e8	0x37feedd1	0x0d8080e8		
0xaca93960	0x88cda05b	0xaca93960	0x88cda05b		
The output state S^6 after 6-round permutation for S^0					
0x0765a592	0xcda58e91	0xa5f12648	0xcf35aef1		
0x2cecc20e	0xc11436eb	0xba243082	0xc0df1177		
0xeda218de	0xeb3f7ab7	0xffb9fd21	0xebe4552b		
The output state $S^{\prime 6}$ after 6-round permutation for $S^{\prime 0}$					
0x0765a592	0x4da58e91	0xa5f12648	0x4f35aef1		
0x2cecc20e	0xc11436eb	0xba243082	0xc0df1177		
0xeda218de	0xeb3f7ab7	0xffb9fd21	0xebe4552b		
$\Delta S^6 = S'^6 \oplus S^6$					
0	0x80000000	0	0x80000000		
0	0	0	0		
0	0	0	0		

The 6-Round Differential Characteristic

State	XOR Difference				
	0	0x7c2c642a	0	0x7c2c642a	
ΔS^0	0	0	0	0	
	0	0	0	0	
	0	0	0	0	
ΔS^1	0	0x6e1c342c	0	0x6e1c342c	
	0	0x2a7c2c64	0	0x2a7c2c64	
	0	0x91143078	0	0x91143078	
ΔS^2	0	0x28785014	0	0x28785014	
	0	0x35288a58	0	0x35288a58	
	0	0x80010008	0	0x80010008	
ΔS^3	0	0x00002000	0	0x00002000	
	0	0x44400080	0	0x44400080	
	0	0x0000080	0	0x0000080	
ΔS^4	0	0x00400000	0	0x00400000	
	0	0x80000000	0	0x80000000	
	0	0	0	0	
ΔS^5	0	0	0	0	
	0	0x80000000	0	0x80000000	
	0	0x80000000	0	0x80000000	
ΔS^6	0	0	0	0	
	0	0	0	0	

Table: The 6-round differential characteristic

Converting SFS Collision Attack to Collision Attack

- Step 1: Obtain all the solutions for the capacity part satisfying the differential characteristic.
- Step 2: Reuse the preimage attack on 5-round Gimli-Hash to connect the capacity part.

Figure: The Probability that the capacity part is valid

Connecting the Capacity Part

Figure: Connecting the capacity part using Property 1&3

$$\begin{aligned} \text{Total} :& 2^{(64+27.4-64)=2^{27.4}}(S^0_{0,1},S^0_{0,3}) \Rightarrow (S^6_{1,1},S^6_{2,1},S^6_{1,3},S^6_{2,3}) \\ \text{Total} :& 2^{(64+27.4-64)=2^{27.4}}(S^6_{1,1},S^6_{2,1},S^6_{1,3},S^6_{2,3}) \Rightarrow (S^0_{0,0},S^0_{0,2}) \\ \text{Total} :& 2^{27.4-27}=2^{0.4}(S^0_{0,0},S^0_{0,2}) \Rightarrow (S^6_{1,0},S^6_{2,0},S^6_{1,2},S^6_{2,2}) \end{aligned}$$

Table: The analytical results of reduced Gimli-Hash

Attack Type	Rounds	Memory	Time
Preimage	$5(S^0\sim S^5)$	2 ⁶⁴	2 ⁹⁶
Collision	$6(S^0\sim S^6)$	2 ⁶⁴	2 ⁶⁴

Conlusion

- The difference transitions are not independent in different rounds.
- The probability of a trail should not be simply computed by counting the number of conditions due to the weak diffusion of Gimli round function.
- The interaction of the Swap (Big-Swap & Small-Swap) and SP-box should be taken into account when devising an attack on the structure.
- The validity of the differential should be carefully checked (e.g. with our model) when mounting a differential-based attack.

Thank you

Practical Attacks on the Last 2/3 Rounds

The sequence of operations:

$$(SP) \rightarrow (SP \rightarrow B_SW) \rightarrow (SP).$$

Conclusion

Based on Property 6, when the number of rounds is reduced to 2 or 3 rounds, given arbitrary message M, $M_0 || M$ is the second the preimage of H(M) where $M_0 = 0$ and M_0 is a 128-bit block.

Practical Attacks on the Last 2/3 Rounds

Figure: Practical second-preimage attack on the last 2/3 rounds of Gimli-Hash

Practical Preimage Attack on 2-Round Gimli-Hash Using Property 5

Table: A message leading to an all-zero state for 2-round Gimli-Hash

M ₀	0x1c5c59da	0x41b61bb7	0	0
M_1	0x9cf49a4e	0x9a80d115	0	0
<i>M</i> ₂	0xa31c3903	0x41e6e73c	0	0
M ₃	0x456723c6	0xdc515cff	0	0
M_4	0x98694873	0x944a58ec	0	0
Full-state Value	0	0	0	0
	0	0	0	0
	0	0	0	0