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1-Round Differential Characteristics [BS91]

Definition A 1-round differential characteristic is a pair
(ΩP ,ΩT ) where ΩP and ΩT are n-bit differences, such that
the probability of a pair with input difference ΩP to have an
output difference ΩT after one round is p.
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r -Round Differential Characteristics [BS91]

Definition A r-round differential characteristic is a tuple
Ω = (ΩP = Ω0,Ω1,Ω2, . . . ,Ωr = ΩT ) where ΩP ,ΩT , and all
Ωi are n-bit differences, where Ωi are the differences predicted
after each round of the scheme.

Orr Dunkelman Cryptanalysis of Lightweight Block Ciphers: Theory Meets Dependencies 4/ 31



Dependency Other Win Open
Characteristics Independence Subkeys Counter

Probability of a Characteristic

◮ Definition: The probability of a characteristic is the
probability that a random pair P, P∗ which satisfies
P ′ = ΩP is a right pair with respect to a random
independent key.

◮ The probability of an r -round characteristic is the product
of all the probabilities of the 1-round characteristics which
compose the n-round characteristic.

◮ There is an underlying assumption that all the transitions
are independent.

◮ Usually, it is OK to assume that. Usually. Usually.

Usually.
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Underlying Assumptions for Differential Attacks

Formally, let

GK

(

ΩP

E
−→ ΩT

)

=
{

P
∣

∣EK (P)⊕ EK (P ⊕ ΩP) = ΩT

}

.

and

G−1
K

(

ΩP

E
−→ ΩT

)

=
{

C
∣

∣E−1
K

(C )⊕ E−1
K

(C ⊕ ΩT ) = ΩP

}

.

These two sets contain all the right pairs (i.e., X is in the set
if it is a part of a right pair).

Orr Dunkelman Cryptanalysis of Lightweight Block Ciphers: Theory Meets Dependencies 6/ 31



Dependency Other Win Open
Characteristics Independence Subkeys Counter

Independence Assumptions for Differential Attacks

1 The probability of the differential characteristic in round i

is independent of other rounds.

(formally: the event X ∈ G−1
K

(ΩP

E0−→ Ωr ′) is independent of

the event X ∈ GK (Ωr ′
E1−→ ΩT ) for all K and Ωr ′)

2 Partial encryption/decryption under the wrong key makes
the cipher closer to a random permutation.
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Independent Subkeys

◮ A cipher whose subkeys are all chosen at random
(independently of each other) can be modeled as a
Markov chain.

◮ For such a cipher, the previous conditions are satisfied
(under reasonable use of the keys) as the independent
subkeys assure that the inputs to each round are truly
random and independent.
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Independent Subkeys — Where We Cheated

◮ The above assumes that the keys are chosen during the
differential attack, and for each new pair of plaintexts,
they are chosen again at random.

◮ This is of course wrong, as the key is fixed a priori, and
the only source of “randomness” in the experiment is the
plaintext pair.

◮ Hence, we need to assume Stochastic Equivalence, i.e.,

Pr[∆C = ΩT |∆P = ΩP ] =

Pr[∆C = ΩT |∆P = ΩC ∧ K = (k1, k2, . . .)]

for almost all keys K .
◮ See more info at [LM93] where the Markov cipher is

introduced.
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Why the Stochastic Equivalence Assumption was

Used?

◮ It works — most of the times it works.

◮ Even when it does not work for a large portion of the keys
— it is mostly an issue of weak keys.

◮ Experiments showed it to hold many times.
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However,

In theory there is no

difference between theory

and practice.

In practice, there is.
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XOR Differences in Additive World [WangDK07]

A differential Characteristic used in [HKK+05] for SHACAL-1
from round 6 to round 12:

i ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆Ki Prob.

6 e3 0 0 e13,31 0 0 2−3

7 e8 e3 0 0 e13,31 e31 2−3

8 0 e8 e1 0 0 0 2−2

9 0 0 e6 e1 0 0 2−2

10 0 0 0 e6 e1 0 2−2

11 e1 0 0 0 e6 0 2−2

12 0 e1 0 0 0 0 2−1
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XOR Differences in Additive World [WangDK07]

◮ According to
Ai+1 = Ki + ROTL5(Ai) + Fi(Bi ,Ci ,Di) + Ei + Coni , we
get that A7,8 = A6,3 and A∗

7,8 = A∗

6,3.
◮ From the encryption algorithm, we get that

A11,1 = E10,1 = A6,3, A
∗

11,1 = E ∗

10,1 = A∗

6,3, E11,6 = A7,8

and E ∗

11,6 = A∗

7,8.
◮ From the above two claims, we obtain that A11,1 = E11,6

and A∗

11,1 = E ∗

11,6. By
Ai+1 = Ki + ROTL5(Ai) + Fi(Bi ,Ci ,Di) + Ei + Coni , we
obtain that A12 6= A∗

12, i.e., ∆A12 6= 0, which is a
contradiction with ∆A12 = 0 in the differential
characteristic.

The signs of the difference are not compatible.
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Linear Cryptanalysis [M93]

◮ Linear cryptanalysis studies the relation between
plaintext, ciphertext, and key bits.

◮ The key element is the linear approximation:

λP · P ⊕ λC · C = λK · K

that holds for non-trivial λP , λC , λK with as large as
possible bias∗.

◮ Such approximations can be built by concatenating short
1-round approximations to form an r -round
approximations.
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Independence Assumptions in Linear Cryptanalysis

◮ Two 1-round approximations that are concatenated are
independent,

◮ There are no other linear approximations (with the same
input/output masks) that interfere with the
approximation we use,

◮ Random wrong keys, produce a close to uniform
distribution w.r.t. the probability of satisfying the
approximation.
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The Boomerang Attack

◮ Introduced by [W99].

◮ Targets ciphers with good short
differentials, but bad long ones.

◮ The core idea: Treat the cipher as a
cascade of two sub-ciphers. Where
in the first sub-cipher a differential

α
E0−→ β exists, and a differential

γ
E1−→ δ exists for the second.

◮ The process starts with a pair of
plaintexts: P1,P2 = P1 ⊕ α.

◮ After the first sub-cipher,
X1 ⊕ X2 = β.

◮ But the encryption process

P1

P2

X1

X2

α
β

E0

C1

C2

E1

C4

δ

X4

γ

X3

γ

C3

δ

β

P3

P4

α
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Underlying Assumptions for the Boomerang Attack

For E = E1 ◦ E0, and any set of differences α, γ and δ,, we

require that X is (part of) a right pair with respect to γ
E1−→ δ

independently of the following three events:

1 X is (part of) a right pair with respect to α
E0−→ β for all

β.

2 X ⊕ β is (part of) a right pair with respect to γ
E1−→ δ for

all β, γ.

3 X ⊕ γ is (part of) a right pair with respect to α
E0−→ β for

all β.
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When Independence Fails — Part I

◮ The independence may fail if
◮ There is one β whose most significant bit is 0 for which

Pr
[

α
E0−→ β

]

= 1/2.

◮ For all other β1: Pr
[

α
E0−→ β1

]

is either 0 or 2−n+1.

◮ In all X ∈ G
−1
K

(

α
E0−→ β

)

and all X ∈ G
−1
K

(

α
E0−→ β

)

the most significant bit is 0.
◮ There is one γ whose most significant bit is 1 for which

Pr
[

γ
E1−→ δ

]

= 1/2.

◮ For all other γ1: Pr
[

γ1
E1−→ δ

]

is either 0 or 2−n+1.
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When Independence Fails — Part II

◮ Consider the case where the last round of the first
differential characteristic relies on the transformation
x

S
−→ y for some S-box S .

◮ If the difference distribution table of S satisfies that
DDTS(x , y ) = 2, and if the difference in γ is such that
the two pairs (Xa,Xc) and (Xb,Xd) have a non-zero
difference in the bits of x , then the transition is
impossible.
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Is it Serious?

◮ It is possible to construct not-so-artificial examples of
boomerangs that fail one of the above two examples
[M09].

◮ On the other hand, the failure is with respect to a pair of
intermediate differences β ′, γ′.

◮ When truly taking all possible differences (in the
boomerang attack or in the rectangle attack), this
problem tends to “shrink”.
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Differential-Linear Cryptanalysis

◮ Introduced first by [LH93] combines a differential with a
linear approximation.

◮ Later extended to deal with probabilistic differentials
[L94,BDK02,. . . ]

◮ Very subtle dependency issues.
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Dependency in DL Cryptanalysis

◮ Local issues — the differential and the linear
approximation must not have internal dependency issues,

◮ Transition issues — wrong pairs (w.r.t. the differential)
behave randomly w.r.t. the linear approximation,

◮ Transition issues 2 — right pairs (w.r.t. the differential)
behave randomly w.r.t. the linear approximation,
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Dependency Can Also Help!

◮ We can utilize dependency for improving attacks.

◮ Differential/linear cryptanalysis — conditional variants
[BB93,BP18], multidimensional linear attacks
[JV03,KR94,BDQ04,. . . ], yoyo [BBD+99], mixture
differentials [G18]

◮ Boomerang — boomerang switch [W99,BK09],
middle-round trick [BCD03], Sandwich [DKS10],
Boomerang Connectivity Table [CHP+18]

◮ Differential-Linear — Differential-Linear Connection Table
[BDK+19]
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Conditional Differential Cryptanalysis [BB93]

◮ Condition the differential transition on “events”.

◮ Key conditions can be viewed as “weak-key” classes (very
large ones).

◮ For hash functions — very related to collision finding
techniques.

◮ Can be conditioned on actual plaintext/ciphertext values.
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Conditional Linear Cryptanalysis [BP18]

◮ Condition the linear approximation on externally
observable events.

◮ For example, fix a bit to some value.

◮ Or condition on a second linear approximation.
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Piccolo (Linear Cryptanalysis & S-boxes)

◮ Piccolo is a generalized Feistel construction [SIH+11] for
lightweight environments.

◮ Its round function has the following structure:

S S

S S

S S

S S

16 16

4

4

4

4

M
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Finding a Linear Approximation through F

◮ The matrix M is an MDS.
◮ Just look for 5 active S-boxes approximations.
◮ Or treat the entire function as a 16-bit function:

Linear approximation of F Bias
0029x → 8808x 2−5

2229x → 0008x 2−5

2922x → 0800x 2−5

1022x → 0088x 2−5

9022x → 0088x 2−5

4046x → 8900x 2−5

C046x → 8900x 2−5

2222x → 8888x2222x → 8888x −2−5

2430x → 0608x −2−5

8862x → 000Dx 2−5.2

A862x → 000Dx 2−5.2Orr Dunkelman Cryptanalysis of Lightweight Block Ciphers: Theory Meets Dependencies 27/ 31
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Finding Conditional Approximations of F

Linear approximation of F Toatal Bias MSB=0 MSB=1
5B01x → 0029x 2−5.83 2−5.01 2−8.38

9022x → 0088x 2−5.01 2−6.05 2−4.44

1022x → 0088x 2−5.01 2−6.05 −2−4.44

4046x → 8900x 2−5.01 2−5.44 2−4.71

C046x → 8900x 2−5.01 2−5.44 −2−4.71

62A6x → 0D00x 2−5.21 2−4.87 2−5.71

E2A6x → 0D00x 2−5.21 2−4.87 −2−5.71

662Ax → 00D0x 2−5.21 2−4.87 2−5.71
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Experiments

◮ Can be used to verify the different assumptions.

◮ Important tool in truly assessing the complexity of an
attack.

◮ Guarantee the “science” in cryptanalysis (reproducibility).

◮ Sometimes can help in producing better results. . .
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Open Problems

◮ Maybe it is time to test the differential attack on the full
DES?

◮ Efficient detection of conditional differential
characteristics/linear approximations?

◮ More work with values instead of differences?

◮ MILP modeling of “long” relations and consistency
checks?

◮ Improved analysis techniques for dependency checks?
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Questions?

Thank you for your attention!
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