Correlation of Quadratic Boolean Functions: Cryptanalysis of All Versions of Full MORUS

Siwei Sun

Joint work with: Danping Shi Yu Sasaki Chaoyun Li Lei Hu

Chinese Academy of Sciences, China

NTT Secure Platform Laboratories, Japan

imec-COSIC, Dept. Electrical Engineering (ESAT), KU Leuven, Belgium

December 14, 2019

Outlines

- 1 Correlation and Linear Cryptanalysis
- 2 Correlation of Quadratic Boolean Functions
- Cryptanalysis of MORUS
- 4 Conclusion and Discussion

Outline

1 Correlation and Linear Cryptanalysis

- 2 Correlation of Quadratic Boolean Functions
- Cryptanalysis of MORUS
- 4 Conclusion and Discussion

Correlation

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$ be a Boolean function with ANF

$$f(\mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} a_{\mathbf{u}} \mathbf{x}^{\mathbf{u}},$$

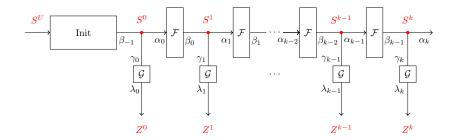
where
$$\mathbf{x} = (x_1, \cdots, x_n), \mathbf{u} = (u_1, \cdots, u_n), \mathbf{a}_{\mathbf{u}} \in \mathbb{F}_2$$
, and $\mathbf{x}^{\mathbf{u}} = \prod_{i=1}^n x_i^{u_i}$.

Definition (Correlation)

The correlation of an *n*-variable Boolean function *f* is $\operatorname{cor}(f) = \frac{1}{2^n} \sum_{\mathbf{x} \in \mathbb{F}_2^n} (-1)^{f(\mathbf{x})}$, and the weight of the correlation is defined as $-\log_2 |\operatorname{cor}(f)|$.

•
$$Pr(f = 0) = \frac{1}{2} + \frac{1}{2}cor(f)$$

Linear Cryptanalysis



Object: $\max |\operatorname{cor} \left(\sum_{i=0}^{k} \lambda_i Z^i \right) |$ Note that $\sum_{i=0}^{k} \lambda_i Z^i$ is a Boolean function whose variables are bits of S^0 .

Definition (Correlation)

The correlation of an *n*-variable Boolean function *f* is $\operatorname{cor}(f) = \frac{1}{2^n} \sum_{\mathbf{x} \in \mathbb{F}_2^n} (-1)^{f(\mathbf{x})}$, and the weight of the correlation is defined as $-\log_2 |\operatorname{cor}(f)|$.

- Brute force the input
- Graph-based method [TIM⁺18]

•

Outline

Correlation and Linear Cryptanalysis

2 Correlation of Quadratic Boolean Functions

- Cryptanalysis of MORUS
- 4 Conclusion and Discussion

Definition (Disjoint Quadratic Boolean Function)

A quadratic Boolean function $f(x_1, \dots, x_n)$ is disjoint if no variable x_i appears in more than one quadratic term.

Example

 $x_1x_2 + x_3x_4$

 $x_1x_3 + x_2x_4 + x_2 + x_5$

Counter-Example

 $x_1x_2 + x_2x_3$

lemma

Let $f = x_{i_1}x_{i_2} + \cdots + x_{i_{2k-1}}x_{i_{2k}} + x_{j_1} + \cdots + x_{j_s}$ be a disjoint quadratic Boolean function. Then the correlation of f is

$$\begin{cases} (-1)^{\sum_{t=1}^{k} \operatorname{Coe}_{f}(x_{i_{2t-1}}) \operatorname{Coe}_{f}(x_{i_{2t}})} \cdot 2^{-k} & \{j_{1}, \cdots, j_{s}\} \subseteq \{i_{1}, \cdots, i_{2k}\} \\ 0 & \{j_{1}, \cdots, j_{s}\} \subsetneq \{i_{1}, \cdots, i_{2k}\} \end{cases}$$

where $\operatorname{Coe}_{f}(x^{u})$ denotes the coefficient of the monomial x^{u} in the ANF of f.

$$|\operatorname{cor}(x_1x_2 + x_3x_4)| = 2^{-2}$$
$$|\operatorname{cor}(x_1x_3 + x_2x_4 + x_2 + x_5)| = 0$$
$$|\operatorname{cor}(x_1x_3 + x_2x_4 + x_2 + x_3)| = 2^{-2}$$

Idea

Given a quadratic Boolean function, transform it into a disjoint quadratic Boolean function such that the transformation is correlation invariant (up to a minus sign).

$$f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$$

$$f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$$

 $f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$

$$f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$$

- $f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$
- $f = \frac{x_2(x_1 + x_3 + x_4) + x_1x_5 + x_1 + x_2}{x_1 + x_2}$

$$f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$$

$$f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$$

$$f = x_2 (x_1 + x_3 + x_4) + x_1 x_5 + x_1 + x_2$$

$$x_1 \leftarrow x_1 + x_3 + x_4$$

$$x_j \leftarrow x_j, \quad j \neq 1$$

$$f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$$

$$f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$$

$$f = x_2 (x_1 + x_3 + x_4) + x_1 x_5 + x_1 + x_2$$

$$x_1 \leftarrow x_1 + x_3 + x_4$$

$$x_j \leftarrow x_j, \quad j \neq 1$$

$$f = x_1 x_2 + x_1 x_5 + x_3 x_5 + x_4 x_5 + x_1 + x_3 + x_4 + x_2$$

$$f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$$

$$f = x_1 x_2 + x_1 x_5 + x_2 x_3 + x_2 x_4 + x_1 + x_2$$

$$f = x_2 (x_1 + x_3 + x_4) + x_1 x_5 + x_1 + x_2$$

$$x_1 \leftarrow x_1 + x_3 + x_4$$

$$x_j \leftarrow x_j, \quad j \neq 1$$

$$f = x_1 x_2 + x_1 x_5 + x_3 x_5 + x_4 x_5 + x_1 + x_3 + x_4 + x_2$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_2(x_1 + x_3 + x_4) + x_1x_5 + x_1 + x_2$$

$$x_1 \leftarrow x_1 + x_3 + x_4$$

$$x_j \leftarrow x_j, \quad j \neq 1$$

$$f = x_1x_2 + x_1x_5 + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$f = x_1(x_2 + x_5) + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_2(x_1 + x_3 + x_4) + x_1x_5 + x_1 + x_2$$

$$x_1 \leftarrow x_1 + x_3 + x_4$$

$$x_j \leftarrow x_j, \quad j \neq 1$$

$$f = x_1x_2 + x_1x_5 + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$f = x_1(x_2 + x_5) + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$x_2 \leftarrow x_2 + x_5$$

$$x_j \leftarrow x_j, \quad j \neq 2$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_2(x_1 + x_3 + x_4) + x_1x_5 + x_1 + x_2$$

$$x_1 \leftarrow x_1 + x_3 + x_4$$

$$x_j \leftarrow x_j, \quad j \neq 1$$

$$f = x_1x_2 + x_1x_5 + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$f = x_1(x_2 + x_5) + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$x_2 \leftarrow x_2 + x_5$$

$$x_j \leftarrow x_j, \quad j \neq 2$$

$$f = x_1x_2 + x_3x_5 + x_4x_5 + x_1 + x_2 + x_3 + x_4 + x_5$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_2(x_1 + x_3 + x_4) + x_1x_5 + x_1 + x_2$$

$$x_1 \leftarrow x_1 + x_3 + x_4$$

$$x_j \leftarrow x_j, \quad j \neq 1$$

$$f = x_1x_2 + x_1x_5 + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$f = x_1(x_2 + x_5) + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$x_2 \leftarrow x_2 + x_5$$

$$x_j \leftarrow x_j, \quad j \neq 2$$

$$f = x_1x_2 + x_3x_5 + x_4x_5 + x_1 + x_2 + x_3 + x_4 + x_5$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_2(x_1 + x_3 + x_4) + x_1x_5 + x_1 + x_2$$

$$x_1 \leftarrow x_1 + x_3 + x_4$$

$$x_j \leftarrow x_j, \quad j \neq 1$$

$$f = x_1x_2 + x_1x_5 + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$f = x_1(x_2 + x_5) + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$x_2 \leftarrow x_2 + x_5$$

$$x_j \leftarrow x_j, \quad j \neq 2$$

$$f = x_1x_2 + x_3x_5 + x_4x_5 + x_1 + x_2 + x_3 + x_4 + x_5$$

$$f = x_1x_2 + x_3x_5 + x_4x_5 + x_1 + x_2 + x_3 + x_4 + x_5$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_1x_2 + x_1x_5 + x_2x_3 + x_2x_4 + x_1 + x_2$$

$$f = x_2(x_1 + x_3 + x_4) + x_1x_5 + x_1 + x_2$$

$$x_1 \leftarrow x_1 + x_3 + x_4$$

$$x_j \leftarrow x_j, \quad j \neq 1$$

$$f = x_1x_2 + x_1x_5 + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$f = x_1(x_2 + x_5) + x_3x_5 + x_4x_5 + x_1 + x_3 + x_4 + x_2$$

$$x_2 \leftarrow x_2 + x_5$$

$$x_j \leftarrow x_j, \quad j \neq 2$$

$$f = x_1x_2 + x_3x_5 + x_4x_5 + x_1 + x_2 + x_3 + x_4 + x_5$$

$$f = x_1x_2 + x_5(x_3 + x_4) + x_1 + x_2 + x_3 + x_4 + x_5$$

$$x_j \leftarrow x_j, \quad j \neq 3$$

$$f \leftarrow x_1x_2 + x_3x_5 + x_1 + x_2 + x_3 + x_5$$

Theorem

Given a quadratic boolean function $f(\mathbf{x}) = f(x_1, \dots, x_n)$, the algorithm outputs a disjoint quadratic Boolean function $\hat{f}(\mathbf{x})$ and an invertible $n \times n$ matrix M, such that $\hat{f}(\mathbf{x}) = f(\mathbf{x}M)$. Moreover, The algorithm has time complexity $\mathcal{O}(n^{3.8})$ and memory complexity $\Omega(n^2)$.

Remark

On 22-06-2019, we received an E-mail from Ryan Williams (MIT), which indicated that essentially the same theory concerning quadratic forms had been developed much earlier (despite some superficial differences in the appearance).

- Leonard Carlitz: *Gauss sums over finite fields of order* 2^{*n*}. Acta Arithmetica. 1969.
- Andrzej Ehrenfeucht and Marek Karpinski: The computational complexity of (xor, and)-counting problems. International Computer Science Inst. 1990
- Roland Mirwald and Claus-Peter Schnorr: *The Multiplicative Complexity of Quadratic Boolean Forms*. Theor. Comput. Sci. 1992.

Outline

1 Correlation and Linear Cryptanalysis

2 Correlation of Quadratic Boolean Functions

- Cryptanalysis of MORUS
- 4 Conclusion and Discussion

Correlation and Linear Cryptanalysis Correlation of Quadratic Bo

The CAESAR Competition

- R1: 58 candidates, 2014.3-2015.7
- R2: 29 candidates, 2015.7-2016.8
- R3: 15 candidates, 2016.8-2018.3
- RF: 7 candidates, 2018.3-2019.3

Finalists of CAESAR

6 winners were announce on March 20, 2019.

MORUS

- Designers: Hongjun Wu and Tao Huang
- Stream-cipher like design
- MORUS-640, 128-bit key
- MORUS-1280, 128-bit or 256-bit key
- MORUS-1280-256 was broken in ASIACRYPT 2018 [AEL+18]

Name	State size (5q)	Register size (q)	Word size $(q/4)$	Key size
MORUS-640-128	640	128	32	128
MORUS-1280-128	1280	256	64	128
MORUS-1280-256	1280	256	64	256

Encryption Algorithm

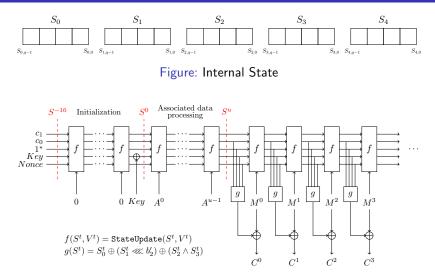
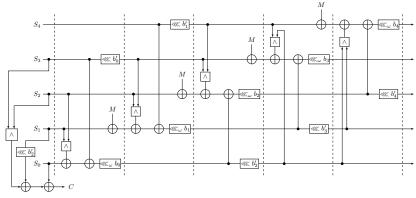
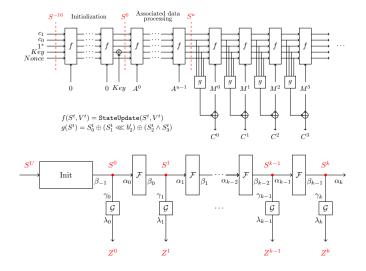


Figure: The encryption algorithm of MORUS

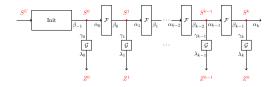
State Update Function



b' is multiple of word size



- For a block cipher, we have many tools (Matsui's branch and bound, MILP, SAT, SMT, CP etc.) to search for its linear trails.
- For the key stream generator?



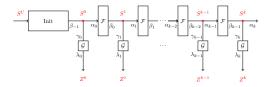
Definition

linear trail A linear trail of the key stream generator shown in Fig:

$$(\beta_{-1}, \gamma_0, \lambda_0, \alpha_0, \beta_0, \cdots, \alpha_{k-1}, \beta_{k-1}, \gamma_k, \lambda_k, \alpha_k)$$

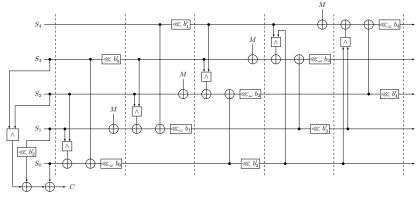
is said to be exploitable if and only if $\beta_{-1} = 0$, $\alpha_k = 0$, and $\alpha_i \oplus \gamma_i \oplus \beta_{i-1} = 0$ for $0 \le i \le k$.

Linear characteristic



$$\begin{cases} \beta_{-1} = 0\\ \alpha_k = 0\\ \alpha_i + \gamma_i + \beta_{i-1} = 0, & 0 \le i \le k\\ \gamma_i S^i + \lambda_i Z^i = 0, & 0 \le i \le k\\ \alpha_i S^i + \beta_i S^{i+1} = 0, & 0 \le i \le k - 1 \end{cases}$$
(1)

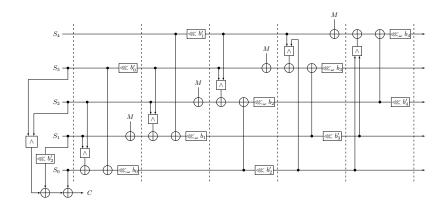
Rotationally Invariant Masks [AEL+18]



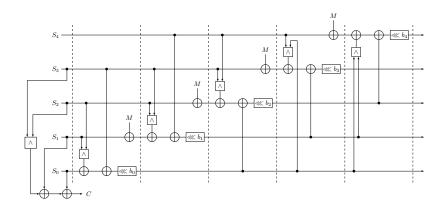
b' is multiple of word size

• MiniMORUS: each register contains a single word

MiniMORUS



MiniMORUS



- Any linear characteristic search tool (Matsui, MILP, SAT/SMT, CP, etc.) can be applied.
- The resulting characteristics are only locally sound!
- Any characteristic can be converted to a quadratic boolean function in variables $S_{i,j}^t$, from which the correlation should be recalculated!

$$\begin{cases} f_1(x_1, x_2, x_3) = x_1 x_2 + x_2, \operatorname{cor}(f_1) = 2^{-1} \\ f_2(x_1, x_2, x_3) = x_1 x_3, \operatorname{cor}(f_2) = 2^{-1} \\ f = f_1 + f_2 = x_1 x_2 + x_1 x_3 + x_2 \end{cases}$$

 $\operatorname{cor}(f) = 0 \neq 2^{-2}$

•

Table: An invalid trail of MiniMORUS-640 with span 3

Round				Linear masks		
	α_0	40400000	40400000	00000000	40400000	00000000
		08000008	00400000	00000000	00000000	00000000
		08000008	00200000	00000000	00000000	00400000
0		08000008	00200000	00000000	00000000	00400000
0		08000008	00200000	00000000	00000000	00400000
	β_0	08000008	00200000	00400000	00000000	80000008
	γ_0	40400000	40400000	00000000	40400000	00000000
	λ_0	40400000				
	α_1	20600000	28400008	00400000	20600000	80000008
		0c000004	08000008	00000000	00000000	80000008
		0c000004	0400004	08000000	00000000	08000000
1		04000004	0400004	0000004	00000000	00000000
1		04000004	04000004	00000004	00000000	00000000
	β_1	04000004	04000004	00000004	00000000	00000000
	γ_1	28600008	28600008	00000000	20600000	00000000
	λ_1	28600008				
2	γ_2	04000004	04000004	0000004	00000000	00000000
2	λ_2	04000004				

Dependent AND Gates

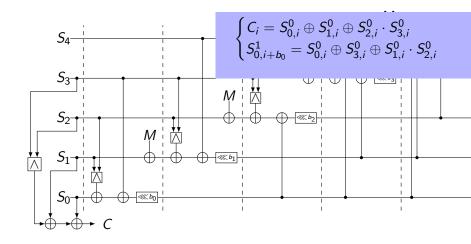


Table: A linear trail of MiniMORUS-640 with correlation -2^{-8}

Round		Linear masks				
	α_0	10000000	10000000	00000000	10000000	0000000
		00000002	00000000	00000000	00000000	0000000
		00000002	00000000	00000000	00000000	0000000
0		00000002	00000000	00000000	00000000	0000000
0		00000002	00000000	00000000	00000000	0000000
	β_0	00000002	00000000	00000000	00000000	0000000
	γ_0	10000000	10000000	00000000	10000000	0000000
	λ_0	10000000				
	α_1	08000200	08000202	00000002	08000200	0000000
		00004001	00000002	00000002	00000000	0000000
		00004001	0000001	00000000	00000000	0000000
1		00004001	0000001	00000000	00000000	0000000
1		00004001	0000001	00000000	00000000	0000000
	β_1	00004003	0000003	00000002	00000000	0000400
	γ_1	08000202	08000202	00000002	08000200	0000000
	λ_1	08000202				
	α_2	00000100	00004100	00000000	00000100	0000400
		00002000	00004000	00000000	00000000	0000400
		00002000	00002000	00000000	00000000	0000000
2		00002000	00002000	00000000	00000000	0000000
2		00002000	00002000	00000000	00000000	0000000
	β_2	00002000	00002000	00000000	00000000	0000000
	γ_2	00004103	00004103	00000002	00000100	0000000
	λ_2	00004103				
3	γ_3	00002000	00002000	00000000	00000000	0000000
	λ_3	00002000				

- We only list the values for α_i, β_i, γ_i, and λ_i. Actually, for every input and output bits of all the AND gates involved, the solution specifies their masks.
- For every AND gate whose output mask is 1 (active AND gates), we can write down a equation in S^t_{i,i}.
- Summing up this equations gives $\sum \lambda_i Z_i$ expressed in a quadratic Boolean function in $S_{i,j}^t$.
- Trails for MiniMORUS can be extended to full MORUS.

Target	Span	cor	Data	Time	Source
MiniMORUS-640	5	2^{-16}	2 ³²	2 ³²	[AEL ⁺ 18]
1011111010103-040	4	2 ⁻⁸	2 ¹⁶	2 ¹⁶	Ours
MiniMORUS-1280	5	2^{-16}	2 ³²	2 ³²	[AEL ⁺ 18]
WIIIIWOR03-1200	4	2 ⁻⁸	2 ¹⁶	2 ¹⁶	Ours
MORUS-640-128	4	2^{-38}	2 ⁷⁶	2 ⁷⁶	Ours
MORUS-1280-128	4	2^{-38}	2 ⁷⁶	2 ⁷⁶	Ours
MORUS-1280-256	5	2^{-76}	2 ¹⁵²	2 ¹⁵²	[AEL+18]
WOR03-1200-250	4	2^{-38}	2 ⁷⁶	2 ⁷⁶	Ours

Table: A summary of the results

- Distinguishing attack
- Message recovery attack

Assumptions

- S⁰ is random (quite reasonable!).
- Sⁱs are independent for different *i*. (??)

Table: Verification for MiniMORUS

Version	Experiments	Theoretically
MiniMORUS-640	$2^{-7.7919}$	2 ⁻⁸
MiniMORUS-1280	$2^{-8.1528}$	2 ⁻⁸

Table: The five trail fragments of MORUS-640

	Trail fragment	Weight
χ1	$C^0_{\{124,92,60,28\}}\oplus C^1_{\{97,65,33,1\}}=S^1_{4,\{97,65,33,1\}}\oplus S^2_{1,\{96,64,32,0\}}$	7
χ_2	$C^1_{\{123,91,59,27\}} \oplus C^2_{\{96,64,32,0\}} = S^2_{1,\{96,64,32,0\}}$	8
χ_3	$C^{2}_{\{104,72,40,8\}} \oplus C^{3}_{\{109,77,45,13\}} = S^{3}_{1,\{109,77,45,13\}}$	8
χ_4	$C^{1}_{\{105,73,41,9\}} \oplus C^{2}_{\{110,78,46,14\}} = S^{3}_{1,\{109,77,45,13\}} \oplus S^{2}_{4,\{110,78,46,14\}}$	7
χ_5	$C^2_{\{97,65,33,1\}} = S^1_{4,\{97,65,33,1\}} \oplus S^2_{4,\{110,78,46,14\}}$	8

Table: The five trail fragments of MORUS-1280

	Trail fragment	Weight
χ_1	$C^0_{\{208,144,80,16\}} \oplus C^1_{\{221,157,93,29\}} = S^1_{4,\{221,157,93,29\}} \oplus S^2_{1,\{203,139,75,11\}}$	7
χ_2	$C^{1}_{\{254,190,126,62\}} \oplus C^{2}_{\{203,139,75,11\}} = S^{2}_{1,\{203,139,75,11\}}$	8
χ_3	$C^2_{\{194,130,66,2\}} \oplus C^3_{\{207,143,79,15\}} = S^3_{1,\{207,143,79,15\}}$	8
χ_4	$C^{1}_{\{212,148,84,20\}} \oplus C^{2}_{\{225,161,97,33\}} = S^{3}_{1,\{207,143,79,15\}} \oplus S^{2}_{4,\{225,161,97,33\}}$	7
χ_5	$C^2_{\{221,157,93,29\}} = S^1_{4,\{221,157,93,29\}} \oplus S^2_{4,\{225,161,97,33\}}$	8

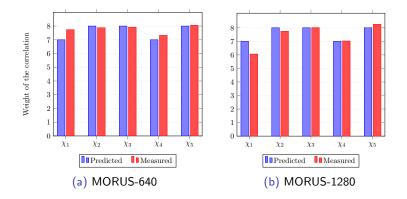


Figure: Experimental verification of the trail fragments of MORUS-640 and MORUS-1280

Outline

1 Correlation and Linear Cryptanalysis

- 2 Correlation of Quadratic Boolean Functions
- Cryptanalysis of MORUS
- 4 Conclusion and Discussion

- Correlation of quadratic Boolean function can be computed efficiently.
- How about Boolean functions with higher degrees?
- How can we search for trails which are not rotationally invariant?
- MILP based search can only deal with small spans.
- Some manual analysis targeting Trivium, SNOW, and ZUC using very large spans!

Thanks! Any questions?

References I

Tomer Ashur, Maria Eichlseder, Martin M. Lauridsen, Gaëtan Leurent, Brice Minaud, Yann Rotella, Yu Sasaki, and Benoît Viguier. Cryptanalysis of MORUS.

In Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II, pages 35–64, 2018.

Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki, and Bin Zhang. Fast Correlation Attack Revisited - Cryptanalysis on Full Grain-128a, Grain-128, and Grain-v1.

In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II, pages 129–159, 2018.