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Introduction



Quantum Attacks against

Symmetric Cryptosystems?

It has been said that symmetric key schemes

would not to be much affected by quantum computers



Known Quantum Attacks：～２０１０

Classical Quantum

Exhaustive

Key Search
𝑂(2𝑛) 𝑂(2𝑛/2)

Collision Finding 𝑂(2𝑛/2) 𝑂(2𝑛/3)

“2n-bit key suffices”



Known Quantum Attacks：Today

Classical Quantum

Exhaustive

Key Search
𝑂(2𝑛) 𝑂(2𝑛/2)

Collision Finding 𝑂(2𝑛/2) 𝑂(2𝑛/3)

Key Recovery on

Even-Mansour
𝑂(2𝑛/2) Polynomial time

Forgery against 

CBC-MAC
𝑂(2𝑛/2) Polynomial time

Remark：The last two attacks assumes that

quantum keyed oracles are available



It has been said that symmetric key schemes

would not to be much affected by quantum computers

Quantum Attacks against

Symmetric Cryptosystems?

Symmetric key schemes may be significantly affected !!
・Attacks by Kuwakado and Morii at ISIT2010, ISITA2012

・Attacks by Kaplan et al. at CRYPTO2016



It has been said that symmetric key schemes

would not to be much affected by quantum computers

Quantum Attacks against

Symmetric Cryptosystems?

Symmetric key schemes may be significantly affected !!
・Attacks by Kuwakado and Morii at ISIT2010, ISITA2012

・Attacks by Kaplan et al. at CRYPTO2016

Post-quantum security of symmetric schemes

should be analyzed more carefully
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Attack Models

Quantum Enc.
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Quantum
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A1. Classical algorithms can be converted into quantum

algorithms

quantum query attacks on white-box implementations

A2. Quantum query attacks lead to more realistic

[classical query + quantum computation] attacks

Ex.) Offline Simon’s algorithm at Asiacrypt 2019.

A3. For hash functions, quantum query attacks are natural

A4. If a scheme is secure against quantum query attacks, it can 

be used in cryptographic applications that run on quantum 

computers.

Question:

Why should we consider quantum query attacks?
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Quantum Query Attacks
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Known Quantum Attacks：Today

Classical Quantum

Exhaustive

Key Search
𝑂(2𝑛) 𝑂(2𝑛/2)

Collision Finding 𝑂(2𝑛/2) 𝑂(2𝑛/3)

Key Recovery on

Even-Mansour
𝑂(2𝑛/2) Polynomial time

Forgery against 

CBC-MAC
𝑂(2𝑛/2) Polynomial time

Remark：The last two attacks assumes that

quantum keyed oracles are available

Simon’s algorithm



Simon’s period finding algorithm

Suppose 𝑓: {0,1}𝑛→ 𝑆 and s ∈ {0,1}𝑛 satisfy
∀𝑥 ∈ 0,1 𝑛 𝑓 𝑥 ⊕ 𝑠 = 𝑓(𝑥)

Given an oracle access to 𝑓, find 𝑠. 

Problem

Classical algorithms: Exponential time

Simon’s quantum algorithm: Polynomial time [Sim97]

[Sim97] Daniel R Simon. On the power of quantum computation. SIAM journal on computing, 26(5):1474–1483, 

1997.



Simon’s period finding algorithm

Suppose 𝑓: {0,1}𝑛→ 𝑆 and s ∈ {0,1}𝑛 satisfy
∀𝑥 ∈ 0,1 𝑛 𝑓 𝑥 ⊕ 𝑠 = 𝑓(𝑥)

Given an oracle access to 𝑓, find 𝑠. 

Problem

Classical algorithms: Exponential time

Simon’s quantum algorithm: Polynomial time [Sim97]

[Sim97] Daniel R Simon. On the power of quantum computation. SIAM journal on computing, 26(5):1474–1483, 

1997.

To mount poly-time attacks,

it is important to reduce

the target problem to Simon’s problem 



Even-Mansour cipher 𝐸𝑘1,𝑘2
(P:public permutation)

Key-Recovery Attack on Even-Mansour

𝑃

𝑘1 𝑘2

Quantum CPA against Even-Mansour ciphers

𝑓 𝑥 = 𝐸𝑘1 ,𝑘2 𝑥 ⊕ 𝑃(𝑥) satisfies 𝑓 𝑥 ⊕ 𝑘1 = 𝑓(𝑥)

• We can recover 𝑘1 in polynomial time with 
Simon’s algorithm

• 𝑘2 can easily be recovered since we have 

𝐸𝑘1 ,𝑘2 𝑥 ⊕ 𝑃 𝑥 ⊕ 𝑘1 = 𝑘2

[KM12] H. Kukakado and M. Morii: Security on the quantum-type Even-Mansour cipher. ISITA 2010.



If quantum queries are allowed, Simon’s algorithm breaks
– CBC-MAC

– PMAC

– GMAC

– GCM

– OCB

…

In polynomial time！

M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia: Breaking symmetric cryptosystems using

quantum period finding (CRYPTO 2016)

Various MACs/AEs are broken in poly-time…

𝐸𝑘1 𝐸𝑘1

𝐸𝑘2

𝛼𝑏 𝑥

𝑓𝑏 𝑥



Luby-Rackoff (Feistel) Construction

PRP? (secure 

against CPA?)

SPRP? (secure 

against CCA?)

2-round × ×

3-round 〇 ×

4-round 〇 〇

5-round 〇 〇

M. Luby, C. Rackoff: How to construct pseudo-random permutations from

pseudorandom functions (CRYPTO '85)

Security in the classical setting



Luby-Rackoff (Feistel) Construction

PRP? (secure 

against CPA?)

SPRP? (secure 

against CCA?)

2-round × ×

3-round ×[KM10] ×

4-round 〇[HI19] ×[IHMSI19]

5-round 〇[HI19] ?

[KM10]      M. Luby, C. Rackoff: Quantum distinguisher between the 3-round Feistel cipher and the random permutation (ISIT 2010)
[IHMSI19]  G. Ito, A. Hosoyamada, R. Matsumoto, Y. Sasaki, T. Iwata: quantum chosen-ciphertext attacks against Feistel ciphers?

(CT-RSA 2019)
[HI19]        A. Hosoyamada, T. Iwata: 4-Round Luby-Rackoff construction is a qPRP. (Asiacrypt 2019) 

Security in the quantum setting



• Speed-up for differential/linear cryptanalysis [KLLN16b]

• Key recovery attacks on Feistel by using the quantum 

distinguishers [HS18b,IHMSI19]

• The attack with Kuperberg’s algorithm [BN18]

• The attack on the FX construction by Leander and May [LM17]

• Speed-up for Demiric-Secluk meet-in-the-middle attack [HS18b, 

BNS19]

Other Quantum Query Attacks

[BN18]       X. Bonnetain, M. Naya-Plasencia: Hidden Shift Quantum Cryptanalysis and Implications, Asiacrypt 2018.

[HS18b]      A. Hosoyamada, Y. Sasaki: Quantum Demiric-Selçuk Meet-in-the-Middle Attacks: Applications to 6-Round Generic Feistel

Constructions, SCN 2018.

[IHMSI19]   G. Ito, A. Hosoyamada, R. Matsumoto, Y. Sasaki, T. Iwata: Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers. 

CT-RSA 2019.

[KLLN16b]  M. Kaplan, G. Leurent, A. Leverrier, M. Naya-Plasencia: Quantum Differential and Linear Cryptanalysis. IACR Trans. 

Symmetric Cryptol. 2016(1), pp. 71-94.

[LM17]         G. Leander, A. May: Grover Meets Simon - Quantumly Attacking the FX-construction. Asiacrypt 2017.

[BNS19] X. Bonnetain, M. Naya-Plasencia, A. Schrottenloher: Quantum Security Analysis of AES. IACR Trans. Symmetric Cryptol. 2019(2),

pp. 55-93.



Attacks with Classical Query + 

Quantum Computation
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Offline Simon’s algorithm (AC 2019)

Quantum query attack with Simon’s algorithm is applicable

Simple On-Off MITM attack is applicable in the classical setting

Even if quantum queries are not allowed and

just a small quantum computer is available, by using

Simon’s algorithm we can mount a memory-efficient attack

X. Bonnetain, A. Hosoyamada, M. Naya-Plasencia, Y. Sasaki, A. Schrottenloher: Quantum Attacks 

without Superposition Queries: the Offline Simon’s Algorithm (Asiacrypt 2019)
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Offline Simon’s algorithm (AC 2019)

Time Query Q. Mem C. Mem

Kuwakado

& Morii [KM12] 2𝑛/3 2𝑛/3 2𝑛/3 2𝑛/3

Hosoyamada

& Sasaki [HS18a] 23𝑛/7 23𝑛/7 Poly(n) 2𝑛/7

Offline Simon 𝟐𝒏/𝟑(< 𝟐𝟑𝒏/𝟕) 𝟐𝒏/𝟑 poly(n) poly(n)

Note: Polynomial factors are ignored. Only classical queries are allowed to keyed oracles.
No parallelized computations.

(Q1 / Classical query ) attacks on Even-Mansour

[KM12] H. Kukakado and M. Morii: Security on the quantum-type Even-Mansour cipher. ISITA 2010.

[HS18a] A. Hosoyamada, Y. Sasaki: Cryptanalysis Against Symmetric-Key Schemes with Online Classical Queries and Offline 

Quantum Computations, CT-RSA 2018.



• Differential / Linear Cryptanalysis [KLLN16b]

• Online-Offline meet-in-the-middle attacks [HS18a]

• Demiric-Selçuk meet-in-the-middle attacks [BNH19,HS18b]

and more… 

30

Other classical query attacks

[KLLN16b] M. Kaplan, G. Leurent, A. Leverrier, M. Naya-Plasencia: Quantum Differential and Linear Cryptanalysis. IACR Trans. 

Symmetric Cryptol. 2016(1), pp. 71-94.

[BNS19]     X. Bonnetain, M. Maya-Plasencia, A. Schrottenloher: Quantum Security Analyais of AES. IACR Toransactoins on 

Symmetric Cryptology, 2019(2). 

[HS18a]      A. Hosoyamada, Y. Sasaki: Cryptanalysis Against Symmetric-Key Schemes with Online Classical Queries and Offline 

Quantum Computations, CT-RSA 2018.

[HS18b]      A. Hosoyamada, Y. Sasaki: Quantum Demiric-Selçuk Meet-in-the-Middle Attacks: Applications to 6-Round Generic Feistel

Constructions, SCN 2018.



Generic Attacks on Hash

31



Collision Attack on Hash

Collision of  f

𝑓



The number of queries required to find a collison

Classical：Θ(𝑁1/2)

Quantum：Θ(𝑁1/3)
[BHT97,Zha15]
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Collision Attack on Hash

[BHT97]   G. Brassard, P. Hoyer, A. Tapp: Quantum cryptanalysis of hash and claw-free functions. ACM Sigact News, 28(2), pp. 

14-17 (1997). 

[Zha15]    M. Zhandry: A note on the quantum collision and set equality problems. Quantum Information & Computation 15(7&8): 

pp. 557-567 (2015)

The BHT Algorithm



MultiCollision Attack on Hash

3-Collision of  f

𝑓



The number of queries required to find an ℓ-collison

Classical：Θ(𝑁(ℓ−1)/ℓ) [STKT08]

Quantum：𝛩( 𝑵
𝟐
ℓ−𝟏

−𝟏

𝟐ℓ−𝟏 )

35

MultiCollision Attack on Hash

[HSX17, HSTX19,LZ19]

[STKT08]   K. Suzuki, D. Tonien, K. Kurosawa, K. Toyota : Birthday paradox for multi-collisions. IEICE Transactions, 91-A(1):39–45, 2008

[HSX17]     A. Hosoyamada, Yu Sasaki, K. Xagawa: Quantum Multicollision-Finding Algorithm. Asiacrypt 2017.

[HSTX19]   A. Hosoyamada, Yu Sasaki, S. Tani, K. Xagawa: Improved Quantum Multicollision-Finding Algorithm. PQCrypto 2019. 

[LZ19]        Q. Liu, M. Zhandry: On Finding Quantum Multi-collisions, Eurocrypt 2019.



36

MultiCollision Attack on Hash

ℓ (multiplicity) 2 3 4 5

Classical (〇) 𝑁
1
2 𝑁

2
3 (𝑁

3

4) (𝑁
4

5)

Quantum (●) 𝑁
1
3 𝑁

3
7 𝑁

15
31 𝑁

31
63

ℓ



• Collision finding with polynomial number of  qubits[CNS17]

– The BHT algorithm finds a collision in time 𝑵𝟏/𝟑 but requires 𝑵𝟏/𝟑

qubits…

– Even if only poly-qubits are available, collision can be found in time 

𝑵𝟐/𝟓 < 𝑵𝟏/𝟐

• Acceleration for the k-xor problem[Amb07, GNS18]

• Multi-target preimage search [BB17, CNS17]

– Applicable to key recovery in multi-key/user setting

37

Other generic attacks on hash

[Amb07]    Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210-239 (2007).

[BB17]       G. Banegas, D. Bernstein: Low-Communication Parallel Quantum Multi-Target Preimage Search. SAC 2017.

[CNS17]     A. Chailloux, M. Naya-Plasencia, A. Schrottenloher: An Efficient Quantum Collision Search Algorithm and Implications 

on Symmetric Cryptography. Asiacrypt 2017.

[GNS18]     L. Grassi, M. Naya-Plasencia, A. Schrottenloher: Quantum Algorithms for the k-xor Problem. Asiacrypt 2018.



Challenges for the future in 

cryptanalysis

38



• More attacks on concrete primitives

• Applications of quantum algorithms other than Simon 

(period finding), Grover, Quantum-walk-search

• New quantum algorithms (attacks) that are specific to 

concrete symmetric key schemes

• Other applications of quantum algorithms in the classical 

query model

and more…

Attacks on keyed primitives



• New Time-Memory tradeoff for inverting functions that is better 

than the classical tradeoff?

Generic attacks on hash



• f: random function/permutation (n-bit to n-bit) / A: adversary

1. A runs precomputation with h and store (classical/quantum) data of size S

2. A receives a randomly chosen y

3. A tries to find x s.t. f(x) = y in time T by using the stored data

Classical tradeoff between T and S:

𝑇 = 2𝑛/𝑆 (if f is a random permutation)

Quantum tradeoff between T and S:

So far, there does not exist any tradeoff that is better than 𝑇 = 2𝑛/𝑆

Grover search achieves 𝑇 = 2𝑛/2 when S=1 but it is not clear what kind of 
trade-off is possible when S > 1…

Time-Memory tradeoff for inverting function
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Security Proofs / Lower bounds



Generic bounds on random functions (query complexity) 

• Preimages of random functions: 𝛩 𝑁 → 𝛩 𝑁1/2

• RP-RF switch: 𝛩 𝑁1/2 → 𝛩 𝑁1/3

• Multicollision-Finding problem: 𝛩 𝑁
ℓ−1

ℓ → 𝛩( 𝑁
2
ℓ−1

−1

2ℓ−1 )

• k-xor: 𝛩 𝑁
1

𝑘 → 𝛩 𝑁
1

𝑘+1

Red: Classical Bound

Blue: Quantum Bound

What has already been done?



Security proofs for specific schemes

(against quantum  query attacks, w/o algebraic assumptions)

• CPA security of encryption modes (CTR, CBC, OFB,…) (@PQCrypto2016)

• Generic composition for AE (@PQCrypto2016)

• PRF security of NMAC/HMAC (@CRYPTO2017)

• Sponge-like construction

– PRF security of sponge with keyed (secret) permutation (@CRYPTO2017)

– Collision-resistance (collapsing) of sponge with public function (@PQCrypto2018)

• Indifferentiability of (fixed-length) Merkle-Damgaard (@CRYPTO2019)

• PRP security of 4-Round Luby-Rackoff (Feistel) (@Asiacrypt 2019)

What has already been done?



What is difficult in the quantum setting?

1. It is not trivial how to record queries
– Copying the values of queries disturbs the adversary’s 

quantum states, which leads to changing its behavior 
significantly

2. ”Lazy Sampling” is not available
– In classical proofs, the value F(x) of a random function 

F is randomly chosen on the fly when the adversary 
queries x to F 

– At most one value is fixed per each classical query

– In the quantum setting, the adversary may query a 
superposition of all possible x at the same time…



The Compressed Oracle Technique

Compressed Oracle Technique [Zha19]  
– It enables us to do “Lazy sampling” to some extent for random 

functions in the quantum setting

– The important observation: Sometimes recorded

information should be “forgotten”

– Many applications:

Quantum Indifferentiability of Merkle-Damgaard[Zha19]

Lower bound for multicollision finding problem[LZ19]

quantum PRP security of 4-round Luby-Rackoff[IH19]

etc…

[Zha19]      M. Zhandry: How to record quantum queries, and applications to quantum indifferentiability. Crypto 2019.

[LZ19]        Q. Liu, M. Zhandry: On Finding Quantum Multi-collisions, Eurocrypt 2019.

[IH19]         A. Hosoyamada, T. Iwata: 4-round Luby-Rackoff Construction is a qPRP. Asiacrypt 2019.



One remark:

Zhandry’s compressed oracle technique cannot be applied to 

permutations 

The Compressed Oracle Technique



Remarks on query lower bound

Research Area Problems Backward query?

Quantum 

computation
Worst case ×

Public key

crypto

Average case

(randomized)
×

Symmetric key

crypto

Average case

(randomized)
○
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Quantum 

computation
Worst case ×

Public key

crypto
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×

Symmetric key

crypto

Average case

(randomized)
○



• So far there is no published results on quantum proof 

techniques  for public random permutation or ideal cipher

• Exception: One-wayness of Davies-Meyer Compression function

[HY18]

– Giving security proofs by computing statistical distance

– (so far & as far as I know) the only published results on quantum 
proofs for schemes in ideal permutation model / ideal cipher model

w/o algebraic assumptions

It is hard to treat permutations…

[HY18] A. Hosoyamada, K. Yasuda: Building quantum one-way functions from block ciphers: Davies-

Meyer and Merkle-Damgaard constructions. Asiacrypt 2018.

E



• Generic and strong proof technique to treat random permutations / 

ideal ciphers
– The compressed oracle technique: Since F is a random function, F(x) 

and F(y) are independent, which means that the quantum registers for 
F(x) and F(y) are not entangled 

– If we try to apply the compressed oracle technique to a random 
permutation P, P(x) and P(y) are not independent, which means that 
the quantum registers for P(x) and P(y) will be entangled

Quantum entanglement always make things extremely difficult…

Solved??

Czajkowski, Majenz, Schaffner, Zur: Quantum lazy sampling and game-

playing proofs for quantum indifferentiability. (ePrint 2019/428)

Challenges for the future
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Summary



• Recent results show many unexpected attacks are possible in the 

quantum setting

– Many schemes are broken in poly-time with quantum queries

– Simon’s algorithm is applicable even if only classical queries are allowed

– Various new tradeoffs

• There are lots of challenging but interesting topics to study

– Time-memory tradeoffs for inverting functions?

– Proof techniques for permutations?

– AES can be broken with quantum algorithms?

Summary

Thank you!


