
Detection of Data Corruption
via Combinatorial Group Testing

and beyond

Kazuhiko Minematsu∗

NEC

The 9th Asian-workshop on Symmetric Key Cryptography (ASK 2019)
December 14, 2019 Kobe, Japan

∗ Joint Work with Norifumi Kamiya
1 / 26

Introduction

Message Authentication Code (MAC)
• Symmetric-key Crypto for tampering detection
• Alice computes tag T = MAC(K,M) for message M

• Bob verifies (M,T) by checking tag

Alice
(M;T)

Bob

T = MAC(K;M)

Eve
(M 0; T 0)

2 / 26

Limitation on Conventional MACs
When message M consists of m items (e.g. HDD sectors)

Say d < m items were corrupted. How to detect them ?
• Important feature w/ many potential applications

– Storage integrity, IoT, digital forensics etc.
• Trivial solutions have limitations :

– One tag for all items : impossible
– Tag for each item : possible but not scalable (m tags)

M[1]

M[2]

M[3]

M[4]

T

M
A
C

M[1]

M[2]

M[3]

M[4]

T [1]

M
A
C

T [2]

M
A
C

T [3]

M
A
C

T [4]

M
A
C

Can we reduce tags w/o losing the detection capability ?

3 / 26

Possible Direction : Overlapping MAC Inputs

Ex. m = 7 items, t = 3 tags
the scheme determined by 3× 7 test matrix H

M[1]

M[2]

M[3]

M[4]

T [1]

M
A
C

T [2]

T [3]

M[5]

M[6]

M[7]

M
A
C

M
A
C

H =

1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1



4 / 26

Possible Direction : Overlapping MAC Inputs

Suppose at most d = 1 item was corrupted.
The response (verification result) is 3 bits :

Response 000 001 010 011 100 101 110 111
Corrupted item none 7 6 5 4 3 2 1

• One-to-one between the response and the pattern of corruption
• → the corrupted item can be identified

We call this Corruption Detectable MAC

5 / 26

Combinatorial Group Testing (CGT) and CDMAC

CDMAC is an application of combinatorial group testing (CGT)
• CGT : a method to find defectives using group test (”does group

G contain any defective ?”) [DH00]
– invented during WWII by Durfman, as a method to find syphilis from

blood samples
– applications to biology and information science

For CDMAC :
• Group test = verification of a tag
• Defective = corrupted item

[DH00] Du and Hwang. Combinatorial Group Testing and Its Applications. World Scientific 2000
6 / 26

Disjunct Matrix
How to make the test matrix H?
• if H is d-disjunct, we can detect ≤ d corrupted items
• d-disjuct : “any union of ≤ d columns does not contain any other

column”
Natural goal : use H of minimum rows (t) given (m, d)
• Lower bound : t = Θ(d2 log2m)
• Most known constructions are sub-optimal
• Order-optimal construction exists [PR11]
• Constant-optimal : even the case d = 2 remains open for decades

d columns

H

100. . . 00

1 m

t

[PR11] Porat and Rothchild. Explicit Nonadaptive Combinatorial Group Testing Schemes, IEEE IT 2011
7 / 26

Previous Work on CDMAC/CDHash

The view is not new :
• MAC for data forensics by Goodrich et al. [GAT05]
• Corruption-localizing MAC/hash function by Crescenzo et al.

[CV06,CJS09]
• Use d-disjunct matrix to MAC/Hash function in a black-box way

Possible Applications
• (Cloud) Storage Integrity for (e.g.) forensics or

proof-of-retrievablity
• Approximate/Robust authentication (e.g. biometrics or image)
• Low-bandwidth comminication such as IoT

[GAT05] Goodrich, Atallah and Tammasia. Indexing Information for Data Forensics. ACNS 2005

[CV06] Crescenzo and Vakil. Cryptographic hashing for virus localization. WORM 2006

[CJS09] Crescenzo, Jiang and Safavi-Naini. Corruption-Localizing Hashing. ESORICS 2009
8 / 26

Group-Test MAC [Min15]
First focus on the computational aspects of CD MAC:
• Naive tag computation : O(w) time for H of weight w (worst case

O(mt))
• Showed that a XOR-MAC/PMAC-like structure allows O(m + t)

computation
• Provable security analysis for several relevant notions

M[1]

1

0n

M[2]

2

M[2]

2

0n

M[3]

3

M[3]

3

0n

M[4]

4

G1K T [1]

G2K T [2]

G3K T [3]

S[1]

S[2]

S[3]

=? T 0[1]

=? T 0[2]

=? T 0[3]

From received message

M 0 = (M 0[1]; M 0[2]; M 0[3])

[Min15] Minematsu. Efficient Message Authentication Codes with Combinatorial Group Testing. ESORICS 2015.
9 / 26

What [Min15] did and didn’t

• The computation of CDMAC can be close to single (XOR-)MAC
• What about the communication ?
• The barrier of O(d2 logm) : no non-trivial CDMAC for
d = O(

√
m/ logm) including [Min15]

10 / 26

New Approach to CDMAC [MK19]

XOR-GTM : a novel approach to CDMAC
• Exploits the linearity of (intermediate) tags
• Allows to break O(d2 logm) communication barrier
• Several concrete instantiations

– Significantly smaller # of tags than any of known CDMAC
• Provable security based on standard primitives

[MK19] Minematsu and Kamiya. Symmetric-key Corruption Detection : When XOR-MACs meet Combinatorial Group Testing,
ESORICS 2019

11 / 26

Baseline : GTM [Min15] for (m = 4, t = 3)
(caveat : this ex is not secure as a standard det MAC)

• Tagging : take 3 tags for (M [1],M [2]), (M [2],M [3]), (M [3],M [4])

• Verification : Check the matches of tags, and decode

M[1]

1

0n

M[2]

2

M[2]

2

0n

M[3]

3

M[3]

3

0n

M[4]

4

G1K T [1]

G2K T [2]

G3K T [3]

S[1]

S[2]

S[3]

12 / 26

Baseline : GTM [Min15] for (m = 4, t = 3)
(caveat : this ex is not secure as a standard det MAC)

• Tagging : take 3 tags for (M [1],M [2]), (M [2],M [3]), (M [3],M [4])

• Verification : Check the matches of tags, and decode

M[1]

1

0n

M[2]

2

M[2]

2

0n

M[3]

3

M[3]

3

0n

M[4]

4

G1K T [1]

G2K T [2]

G3K T [3]

S[1]

S[2]

S[3]

=? T 0[1]

=? T 0[2]

=? T 0[3]

From received message

M 0 = (M 0[1]; M 0[2]; M 0[3])

12 / 26

Key Observation : Linearity of S
• Eg. S[1]⊕ S[2] works for checking (M [1],M [3])

• New checkable subset w/o increasing tags
• S[i] obtained by decrypting T [i]

M[1]

1

0n

M[2]

2

M[2]

2

0n

M[3]

3

M[3]

3

0n

M[4]

4

G1K T [1]

G2K T [2]

G3K T [3]

S[1]

S[2]

S[3]

M 0[1]

1

0n

M 0[3]

3

=?

13 / 26

XOR-GTM : Parameters

• (t×m) test matrix H

• Expansion rule R : a subset of 2{1,...,m} (|R| = v)
• Extended test matrix HR : v ×m submatrix of span(H) following

R

– This case : (m = 7, t = 3, v = 6)
– R = ((1), (2), (3), (1, 2), (2, 3), (1, 2, 3))

H =

1 1 0 0
0 1 1 0
0 0 1 1

 , HR =



1 1 0 0
0 1 1 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1

 .

14 / 26

XOR-GTM : Tagging

The same as Min15 : compute T = (T [1], T [2], T [3]) following H

M[1]

1

0n

M[2]

2

M[2]

2

0n

M[3]

3

M[3]

3

0n

M[4]

4

G1K T [1]

G2K T [2]

G3K T [3]

S[1]

S[2]

S[3]

15 / 26

XOR-GTM : Verification Step 1

1. Decrypt T to recover intermediate tags Ŝ = (Ŝ[1], Ŝ[2], Ŝ[3])

2. Compute S = (S[1], S[2], S[3]) from the received message

M[1]

1

0n

M[2]

2

M[2]

2

0n

M[3]

3

M[3]

3

0n

M[4]

4

S[1]

S[2]

S[3]

G1K T [1]

G2K T [2]

G3K T [3]

cS[1]

cS[2]

cS[3]

16 / 26

XOR-GTM : Verification Step 2
1. Apply a linear expansion to Ŝ and S by HR

2. Check the match Ŝ[i] = S[i] for all i,
3. and remove all items those included in passed tests (naive

decoding)
4. Remaining items are identified as corrupted

M[1]

1

0n

M[2]

2

M[2]

2

0n

M[3]

3

M[3]

3

0n

M[4]

4

S[1]

S[2]

S[3]

G1K T [1]

G2K T [2]

G3K T [3]

cS[1]

cS[2]

cS[3]

L
in
ea
r
E
xp
an
si
o
n

S[1]

L
in
ea
r
E
xp
an
si
o
n

cS[1]
=?

S[2] cS[2]
=?

S[3] cS[3]
=?

S[4] cS[4]
=?

S[6] cS[6]
=?

S[5] cS[5]
=?

17 / 26

Properties of XOR-GTM
Security of Corruption Detection
• If HR is d-disjunct, ≤ d corruptions can be found
• Security proved in a similar way as Min15 (eg decoder

unforgeability)
– Assuming PRF and TPRP
– For standard MAC security HR must include all-one row

Computational Efficiency : the same as Min15
• m FK calls + t GK′ calls irrespective of H
• Typically m� t, thus almost efficient as single (XOR-)MAC

M[1]

1

0n

M[2]

2

M[2]

2

0n

M[3]

3

M[3]

3

0n

M[4]

4

G1K T [1]

G2K T [2]

G3K T [3]

S[1]

S[2]

S[3]

18 / 26

Instantiations of XOR-GTM

To instantiate XOR-GTM
• HR should be d-disjunct
• Rank (over GF(2n)) for HR determines the communication cost

(i.e. the lows of H)
– H is a basis matrix of HR

• Thus what needed is d-disjunct matrix of low rank
• No easy :

– Rank of test matrix was rarely studied in the field of CGT
– Known small-row d-disjunct matrices tend to be high-rank (to our

experiments)

19 / 26

Instantiations of XOR-GTM (Contd.)

What we found instead :
• (Near-)square matrices of large d, small rank
• ... almost useless in the context of CGT !
• studied in coding & design theory

Three examples in the (full) paper of [MK19]:
• Macula
• Hadamard for large m and fixed d = 2

• Finite Geometry-based : large m and d

20 / 26

d-disjunct Matrices from Finite Geometry

• P(s) : m×m binary matrix, m = 22s + 2s + 1 for integer s > 0

• Projective-plane incidence (PPI) matrix over GF(2s)

– (i, j) element = 1 iff i-th point is on j-th line

Example: s = 1 (7 lines and 7 points)

P(1) =



0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0



21 / 26

Properties of P(s)

From (classical) coding theory / design theory, P(s) is
• 2s-disjunct
• Rank 3s + 1

Significant advantage over any DirectGTM (conventional CDMAC)
• t ≈ 3s tags to detect d = 2s corruptions (note m = O(22s))
• That is, t = dlog 3 + 1 ≈ d1.58

– DirectGTM needs O(d2 logm) tags
• Sparse parameter choice : mitigated by a class of Affine-plane

matrices by Kamiya [Kam07] (designed for LDPC codes)

[Kam07] Kamiya. High-Rate Quasi-Cyclic Low-Density Parity-Check Codes Derived From Finite Affine Planes. IEEE IT 2007
22 / 26

Numerical Examples for Storage Applications
Ex. 128-bit tag for each 4K-byte sector of storage devices
• XOR-GTM with PPI matrix reduces tags by a factor of 18∼ 75

Target: 4.4 TB HDD Total tag size Corrupted data Imp. Factor
Trivial scheme 17.18 GB No limit 1

(ideal) DirectGTM 14.85 GB 135 MB 1.15
XOR-GTM-PPI (s = 15) 229.58 MB 135 MB 74.82

Target: 1.1 TB HDD Total tag size Corrupted data Imp. Factor
Trivial scheme 4.29 GB No limit 1

(ideal) DirectGTM 3.71 GB 68 MB 1.15
XOR-GTM-PPI (s = 14) 76.52 MB 68 MB 56.06

Target: 4.3 GB Memory Total tag size Corrupted data Imp. Factor
Trivial scheme 16.79 MB No limit 1

(ideal) DirectGTM 14.50 MB 5 MB 1.15
XOR-GTM-PPI (s = 10) 0.94 MB 5 MB 17.86

Also performed experimental implementation up to s = 5 (see
paper)

23 / 26

Communication Ratios (t/m)
• (Blue) : DirectGTM with a known lower bound of d-disjunct matrix [SG16]
• (Black) : DirectGTM with a conjectured lower bound [EFF85]
• (Red) : XOR-GTM-PPI

5 10 15 20 25
log2m0

0.2

0.4

0.6

0.8

1

t/m

24 / 26

Concluding Remarks

• A new approach to corruption detection via MAC
• Significant improvement from the known schemes

– Breaks the theoretical limit in communication
• Many future/ongoing directions

– Implementation using PPI matrix of large s
– Application to aggregate MAC [KL06], hash or digital signature,

error-tolerant variant...

Thanks!

25 / 26

Concluding Remarks

• A new approach to corruption detection via MAC
• Significant improvement from the known schemes

– Breaks the theoretical limit in communication
• Many future/ongoing directions

– Implementation using PPI matrix of large s
– Application to aggregate MAC [KL06], hash or digital signature,

error-tolerant variant...

Thanks!

25 / 26

(Backup) Experimental Implementation

XOR-GTM-PPI on Linux (Ubuntu 16.04, Xeon E5 2.2 GHz):
• Using PMAC-AES for F i

K and XEX-AES for Gi
K′ w/ AES-NI

• Utilized the matrix structure (circulant)
• As message items get long, the speed approaches the speed of

PMAC itself (5.2 cpb for long inputs)

Size of each s = 1 s = 2 s = 3 s = 4 s = 5
message item tag verf tag verf tag verf tag verf tag verf

1 KB 14.6 20.8 16.6 20.7 14.8 22.5 20.67 23.5 15.4 15.5
2 KB 14.5 18.2 14.5 18.2 10.8 17.6 15.0 15.1 16.8 16.9
4 KB 13.5 16.9 10.1 16.9 12.9 14.0 6.3 10.5 12.6 12.7
1 MB 5.2 8.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2

(cycles / input byte)

Now improved, the speed close to native PMAC (0.8 cpb) for 1MB

26 / 26

