Efficient Higher-Order Masking Schemes: Leveraging Amortization and Pre-computation

Weijia Wang

Shandong University, China

December 3, 2023

Table of Contents

- Backgrounds
- Two Approaches
 - Cost amortization
 - Precomputation-based Design Paradigm
- Application
- Conclusion

Table of Contents

- Backgrounds
- Two Approaches
 - Cost amortization
 - Precomputation-based Design Paradigm
- Application
- Conclusion

Masking, two ingredients:

- Randomize the secret
 - Secret variable $x \xrightarrow{\text{rand}} \text{ shares } \hat{\mathbf{x}}[1], \dots, \hat{\mathbf{x}}[d+1]$. Any d shares are independent of x
 - Boolean masking: $x = \hat{x}[1] \oplus ... \oplus \hat{x}[d+1]$
- Private computations.
 - Any d intermediates are independent of the input secrets: d-privacy, d-probing security

Masking, two ingredients:

- Randomize the secret
 - Secret variable $x \xrightarrow{\mathsf{rand}} \mathsf{shares} \; \hat{\mathbf{x}}[1], \dots, \hat{\mathbf{x}}[d+1]$. Any d shares are independent of x
 - Boolean masking: $x = \hat{\mathbf{x}}[1] \oplus \ldots \oplus \hat{\mathbf{x}}[d+1]$
- Private computations.
 - Any d intermediates are independent of the input secrets: d-privacy, d-probing security

Recall the security of RSA:

- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
- If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.

• Masking:

- The security of masking relies on some physical assumptions that can be realized by engineering.
- noisy leakage;
- independent leakage.
- The security increases exponentially with the number of shares
- If there exists a attack can break masking efficiently, then at least one of the assumptions
 does not hold

Recall the security of RSA:

- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
- If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.

• Masking:

- The security of masking relies on some physical assumptions that can be realized by engineering.
- noisy leakage;
- independent leakage.
- The security increases exponentially with the number of shares
- If there exists a attack can break masking efficiently, then at least one of the assumptions
 does not hold

- Recall the security of RSA:
 - The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
 - If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:
 - The security of masking relies on some physical assumptions that can be realized by engineering.
 - noisy leakage;
 - independent leakage.
 - The security increases exponentially with the number of shares
 - If there exists a attack can break masking efficiently, then at least one of the assumptions
 does not hold

Recall the security of RSA:

- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
- If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.

• Masking:

- The security of masking relies on some physical assumptions that can be realized by engineering.
 - noisy leakage:
 - independent leakage.
- The security increases exponentially with the number of shares.
- If there exists a attack can break masking efficiently, then at least one of the assumptions
 does not hold.

- Recall the security of RSA:
 - The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
 - If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:
 - The security of masking relies on some physical assumptions that can be realized by engineering.
 - noisy leakage;
 - independent leakage.
 - The security increases exponentially with the number of shares.
 - If there exists a attack can break masking efficiently, then at least one of the assumptions
 does not hold.

- Recall the security of RSA:
 - The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
 - If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:
 - The security of masking relies on some physical assumptions that can be realized by engineering.
 - noisy leakage;
 - independent leakage.
 - The security increases exponentially with the number of shares.
 - If there exists a attack can break masking efficiently, then at least one of the assumptions
 does not hold.

- Recall the security of RSA:
 - The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
 - If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:
 - The security of masking relies on some physical assumptions that can be realized by engineering.
 - noisy leakage;
 - independent leakage.
 - The security increases exponentially with the number of shares.
 - If there exists a attack can break masking efficiently, then at least one of the assumptions
 does not hold.

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03.
- Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3],$ Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03.
- Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3],$ Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

$\hat{\mathbf{x}}[1]\hat{\mathbf{y}}[1]$	$\hat{\mathbf{x}}[1]\hat{\mathbf{y}}[2]$	x̂[1]ŷ[3]
x [2] ŷ [1]	x [2] ŷ [2]	x [2] ŷ [3]
x [3] ŷ [1]	x [3] ŷ [2]	ӿ̂[3]ŷ[3]

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03.
- Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3],$ Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

x̂[1]ŷ[1]	$\hat{\mathbf{x}}[1]\hat{\mathbf{y}}[2] + r_1$	$\hat{\mathbf{x}}[1]\hat{\mathbf{y}}[3] + r_2$
$\hat{\mathbf{x}}[2]\hat{\mathbf{y}}[1] + r_1$	x [2] ŷ [2]	$\hat{\mathbf{x}}[2]\hat{\mathbf{y}}[3] + r_3$
$\hat{\mathbf{x}}[3]\hat{\mathbf{y}}[1] + r_2$	$\hat{\mathbf{x}}[3]\hat{\mathbf{y}}[2] + r_3$	ӿ̂[3]ŷ[3]

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03.
- Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3],$ Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03.
- Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3]$, Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

Goal: Reducing the Overheads

- Two approaches
 - Cost amortization
 - Weijia Wang et al.: Side-Channel Masking with Common Shares. TCHES 2022.
 - Precomputation
 - Weijia Wang et al.: Efficient Private Circuits with Precomputation. TCHES 2023.
- Application to the masked AES and SKINNY

Table of Contents

- Backgrounds
- 2 Two Approaches
 - Cost amortization
 - Precomputation-based Design Paradigm
- Application
- Conclusion

Table of Contents

- Backgrounds
- Two Approaches
 - Cost amortization
 - Precomputation-based Design Paradigm
- Application
- Conclusion

Cost amortization

Goal: reducing the required random bits.

- Common shares: some shares of different variables are the same.
- Randomness can be reused among different operations.

Asymptotic complexity for a circuit of size $\mathcal{O}(\ell)$:

- ullet The randomness complexity decrease: $\mathcal{O}(\ell d^2) o ilde{\mathcal{O}}(d^2)$
- The computational complexity does not change: $\tilde{\mathcal{O}}(\ell d^2)$

Two Types of Sharings

- Boolean sharing:
 - Secret variable $x \stackrel{\mathsf{rand}}{\longrightarrow} \mathsf{shares} \; \hat{\mathbf{x}}[1], \dots, \hat{\mathbf{x}}[d+1] \; \mathsf{such} \; \mathsf{that} \; x = \hat{\mathbf{x}}[1] \oplus \dots \oplus \hat{\mathbf{x}}[d+1]$
 - Common shares are insecure.
 - Sharing of x: $\hat{\mathbf{x}}[1], \hat{\mathbf{s}}[1], \dots, \hat{\mathbf{s}}[d]$
 - Sharing of y: $\hat{\mathbf{y}}[1], \hat{\mathbf{s}}[1], \dots, \hat{\mathbf{s}}[d]$
 - $\hat{\mathbf{x}}[1] \oplus \hat{\mathbf{y}}[1] = x \oplus y$
- Inner product sharing:
 - Secret variable $x \stackrel{\text{rand}}{\longrightarrow}$ shares $\hat{\mathbf{x}}[1], \dots, \hat{\mathbf{x}}[d+1]$ such that $x = \hat{\mathbf{x}}[1] \oplus a_1 \hat{\mathbf{x}}[2] \oplus \dots, a_d \hat{\mathbf{x}}[d+1]$
 - Common shares can be secure
 - Sharing of $x: \hat{x}[1], \hat{s}[1], \dots, \hat{s}[d]$ such that $x = \hat{x}[1] \oplus a_1\hat{s}[1] \oplus \dots \oplus a_d\hat{s}[d]$
 - Sharing of y: 9[1], 8[1], ..., 8[d] such that $y = 8[1] \oplus b_1 8[1] \oplus ... \oplus b_d 8[d]$
 - Still d-probing secure if $(1, a_1, \ldots, a_d)$ and $(1, b_1, \ldots, b_d)$ are linearly independent.

Two Types of Sharings

- Boolean sharing:
 - Secret variable $x \xrightarrow{\mathsf{rand}} \mathsf{shares} \; \hat{\mathbf{x}}[1], \dots, \hat{\mathbf{x}}[d+1] \; \mathsf{such} \; \mathsf{that} \; x = \hat{\mathbf{x}}[1] \oplus \dots \oplus \hat{\mathbf{x}}[d+1]$
 - Common shares are insecure.
 - Sharing of x: $\hat{x}[1], \hat{s}[1], \dots, \hat{s}[d]$
 - Sharing of y: $\hat{\mathbf{y}}[1], \hat{\mathbf{s}}[1], \dots, \hat{\mathbf{s}}[d]$
 - $\hat{\mathbf{x}}[1] \oplus \hat{\mathbf{y}}[1] = x \oplus y$
- Inner product sharing:
 - Secret variable $x \stackrel{\mathsf{rand}}{\longrightarrow} \mathsf{shares} \; \hat{\mathbf{x}}[1], \dots, \hat{\mathbf{x}}[d+1] \; \mathsf{such} \; \mathsf{that} \; x = \hat{\mathbf{x}}[1] \oplus a_1 \hat{\mathbf{x}}[2] \oplus \dots, a_d \hat{\mathbf{x}}[d+1]$
 - Common shares can be secure!
 - Sharing of x: $\hat{\mathbf{x}}[1], \hat{\mathbf{s}}[1], \dots, \hat{\mathbf{s}}[d]$ such that $x = \hat{\mathbf{x}}[1] \oplus a_1 \hat{\mathbf{s}}[1] \oplus \dots \oplus a_d \hat{\mathbf{s}}[d]$
 - Sharing of y: $\hat{\mathbf{y}}[1], \hat{\mathbf{s}}[1], \dots, \hat{\mathbf{s}}[d]$ such that $y = \hat{\mathbf{x}}[1] \oplus b_1 \hat{\mathbf{s}}[1] \oplus \dots \oplus b_d \hat{\mathbf{s}}[d]$
 - Still d-probing secure if $(1, a_1, \ldots, a_d)$ and $(1, b_1, \ldots, b_d)$ are linearly independent.

Masked Multiplications with Common Shares

- Input of Refresh: Boolean sharings.
- Output of Refresh: inner product sharings, allowing:
 - common shares;
 - randomness reuse.
- Output of Multiplicaiton:
 - Boolean shares.

Table of Contents

- Backgrounds
- 2 Two Approaches
 - Cost amortization
 - Precomputation-based Design Paradigm
- Application
- Conclusion

Precomputation-based Design Paradigm

Challenge-Response Protocol

An Example of the Paradigm

An example for $c=ab(a\oplus b)$ using multiplication, addition and refresh gadgets $_{2,2,2}$

New Masking Multiplication: Mul_k ($k \le d + 1$)

- Input: $x_{1...k}$, $y_{1...k}$. Output: $z_{1...k}$
- The Mul_k is a recursive structure composed of 2 parts: Mul_{k-1} and computation of z_k
 - Mul_{k-1} computes temporary values $u_{1:k-1}$.
 - Random variables $r_{1...k-1}$ are used as output shares $z_{1...k-1}$
- Carefully arrange operation orders for the security.
 - Each output probe gives knowledge of at most one input share in the same index as the output probe
 - Each internal probe gives knowledge of at most one input share

Mul_{d+1} with precomputation

	x_1y_1	x_1y_2	::	$x_1 y_{d+1}$
	x_2y_1	x_2y_2	1	$x_2 y_{d+1}$
L	$x_{d+1}y_1$	$x_{d+1}y_2$		$x_{d+1}y_{d+1}$

Precomputation of Mul_{d+1}

Run in $O(d^2)$, produce O(d) values and require $O(d^2)$ random values

Mul_{d+1} with precomputation

Online computation of Mul_{d+1}

Run in O(d) without any random value

Table of Contents

- Backgrounds
- 2 Two Approaches
 - Cost amortization
 - Precomputation-based Design Paradigm
- Application
- Conclusion

Implementation Results

		d	Kcycles for	Random	RAM for	Kcycles for
			precomp.	bits	precomp.	online.
[GR 17]		2	-	3.75 KB	3.75 KB	83.9
	[VV 21]	2	72590	0.011 KB	40.1 KB	423
	Our work A	2	705	96 Bytes	5.63 KB	60
	Our work B	2	67.98	2.22 KB	2.91 KB	50.03
AES	[GR 17]	8	-	45 KB	45 KB	404.5
ALS	[VV 21]	8	3265303	0.56 KB	40.8 KB	2873
Our work A		8	3 662	1.5 KB	11 KB	137
	Our work B	8	446.34	23.88 KB	11.66 KB	92.27
SKINNY	Our work B	2	159.28	1.91 KB	3.03 KB	75.48
-128	Our work B	8	749.2	22.62 KB	12.12 KB	117.72

- [GR 17]: State-of-the-art result with bitslicing without cost amortization or precomputation
- [VV 21]: State-of-the-art result with precomputation using look-up tables
- Our work A: Cost amortization & precomputation, but no bitslicing
- Our work B: Bitslicing & precomputation, but no cost amortization

Table of Contents

- Backgrounds
- 2 Two Approaches
 - Cost amortization
 - Precomputation-based Design Paradigm
- Application
- Conclusion

Conclusion

- Reducing the overhead of masking:
 - Cost amortized multiplication gadget with common shares
 - The randomness decreases: $\tilde{\mathcal{O}}(\ell d^2) \to \tilde{\mathcal{O}}(d^2)$
 - Precomputation-based design paradigm for masking
 - Pre-computation phase: $\tilde{\mathcal{O}}(\ell d^2)$ (computational), $\tilde{\mathcal{O}}(d^2)$ (randomness).
 - Online phase: $\mathcal{O}(\ell d)$ (computational), without any randomness.
- Applications
 - Saving a large amount of random bits
 - A speed-up for the online phase.

Conclusion

- Reducing the overhead of masking:
 - Cost amortized multiplication gadget with common shares
 - The randomness decreases: $\tilde{\mathcal{O}}(\ell d^2) \to \tilde{\mathcal{O}}(d^2)$
 - Precomputation-based design paradigm for masking
 - Pre-computation phase: $\tilde{\mathcal{O}}(\ell d^2)$ (computational), $\tilde{\mathcal{O}}(d^2)$ (randomness).
 - Online phase: $\mathcal{O}(\ell d)$ (computational), without any randomness.
- Applications
 - Saving a large amount of random bits
 - A speed-up for the online phase.

Cost amortization

Thank You!