Efficient Higher-Order Masking Schemes: Leveraging Amortization and Pre-computation

Weijia Wang

Shandong University, China
December 3, 2023

Table of Contents

(1) Backgrounds
(2) Two Approaches

- Cost amortization
- Precomputation-based Design Paradigm
(3) Application
(4) Conclusion

Table of Contents

(1) Backgrounds
(2) Two Approaches

- Cost amortization
- Precomputation-based Design Paradigm
(3) Application

4. Conclusion

Masking, two ingredients:

- Randomize the secret
- Secret variable $x \xrightarrow{\text { rand }}$ shares $\hat{\mathbf{x}}[1], \ldots, \hat{\mathbf{x}}[d+1]$. Any d shares are independent of x - Boolean masking: $x=\hat{\mathbf{x}}[1] \oplus \ldots \oplus \hat{\mathbf{x}}[d+1]$
- Private computations.

Masking, two ingredients:

- Randomize the secret
- Secret variable $x \xrightarrow{\text { rand }}$ shares $\hat{\mathbf{x}}[1], \ldots, \hat{\mathbf{x}}[d+1]$. Any d shares are independent of x - Boolean masking: $x=\hat{\mathrm{x}}[1] \oplus \ldots \oplus \hat{\mathrm{x}}[d+1]$
- Private computations.
- Any d intermediates are independent of the input secrets: d-privacy, d-probing security

Masking Provides Provable Side-channel Security

- Recall the security of RSA:
- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
- If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:

Masking Provides Provable Side-channel Security

- Recall the security of RSA:
- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
- If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:

Masking Provides Provable Side-channel Security

- Recall the security of RSA:
- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
- If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:

Masking Provides Provable Side-channel Security

- Recall the security of RSA:
- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
- If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:
- The security of masking relies on some physical assumptions that can be realized by engineering.
(1) noisy leakage;
(2) independent leakage
- The security increases exponentially with the number of shares.
- If there exists a attack can break masking efficiently, then at least one of the assumptions does not hold.

Masking Provides Provable Side-channel Security

- Recall the security of RSA:
- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
- If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:
- The security of masking relies on some physical assumptions that can be realized by engineering.
(1) noisy leakage;
(2) independent leakage.
- The security increases exponentially with the number of shares.
- If there exists a attack can break masking efficiently, then at least one of the assumptions does not hold.

Masking Provides Provable Side-channel Security

- Recall the security of RSA:
- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
- If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:
- The security of masking relies on some physical assumptions that can be realized by engineering.
(1) noisy leakage;
- The security increases exponentially with the number of shares.
- If there exists a attack can break masking efficiently, then at least one of the assumptions does not hold

Masking Provides Provable Side-channel Security

- Recall the security of RSA:
- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers.
- If there exists a machine can break RSA efficiently, then this machine can factor the product of two large prime numbers efficiently as well.
- Masking:
- The security of masking relies on some physical assumptions that can be realized by engineering.
(1) noisy leakage;
- The security increases exponentially with the number of shares.
- If there exists a attack can break masking efficiently, then at least one of the assumptions does not hold.

Example: the ISW Multiplicaition with 3 Shares

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03. - Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3]$, Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$
- It requires $\frac{\ell d(d+1)}{2}$ random bits and runs in $\mathcal{O}\left(\ell d^{2}\right)$ to protect a circuit of size $\mathcal{O}(\ell)$.

Example: the ISW Multiplicaition with 3 Shares

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03. - Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3]$, Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

$\hat{\mathrm{x}}[1] \hat{\mathrm{y}}[1]$	$\hat{\mathrm{x}}[1] \hat{y}[2]$	$\hat{\mathrm{x}}[1] \hat{\mathrm{y}}[3]$
$\hat{\mathrm{x}}[2] \hat{\mathrm{y}}[1]$	$\hat{\mathrm{x}}[2 \mathrm{y} \hat{\mathrm{y}}[2]$	$\hat{\mathrm{x}}[2 \mathrm{y}[3]$
$\hat{\mathrm{x}}[3] \hat{\mathrm{y}}[1]$	$\hat{\mathrm{x}}[3] \hat{\mathrm{y}}[2]$	$\hat{\mathrm{x}}[3] \hat{y}[3]$

- It requires $\frac{\ell d(d+1)}{2}$ random bits and runs in $\mathcal{O}\left(\ell d^{2}\right)$ to protect a circuit of size $\mathcal{O}(\ell)$

Example: the ISW Multiplicaition with 3 Shares

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03. - Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3]$, Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

$\hat{\mathrm{x}}$ [1] $\mathrm{y}[1]$	$\begin{aligned} & \hat{\mathrm{x}}[1] \hat{\mathrm{y}}[2] \\ & +r_{1} \end{aligned}$	$\begin{aligned} & \hat{\mathrm{x}}[1] \hat{\mathrm{y}}[3] \\ & +r_{2} \end{aligned}$
$\begin{aligned} & \hat{\mathrm{x}}[2] \hat{\mathrm{y}}[1] \\ & +r_{1} \end{aligned}$	रे[2] y [2]	$\begin{aligned} & \hat{\mathrm{x}}[2] \hat{\mathrm{y}}[3] \\ & +r_{3} \end{aligned}$
$\begin{aligned} & \hat{\mathrm{x}}[3] \hat{\mathrm{y}}[1] \\ & +r_{2} \end{aligned}$	$\begin{aligned} & \hat{\mathrm{x}}[3] \hat{\mathrm{y}}[2] \\ & +r_{3} \\ & \hline \end{aligned}$	$\hat{\mathrm{x}}[3] \hat{\mathrm{y}}[3]$

- It requires $\frac{\ell d(d+1)}{2}$ random bits and runs in $\mathcal{O}\left(\ell d^{2}\right)$ to protect a circuit of size $\mathcal{O}(\ell)$

Example: the ISW Multiplicaition with 3 Shares

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03. - Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3]$, Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

$\hat{\mathrm{x}}[1] \hat{y}[1]$	$\hat{\hat{x}}[1] \underline{\hat{y}}[2]$	$\hat{\hat{x}}[1] \underline{\hat{y}}[3]$
$\begin{aligned} & \hat{\mathrm{x}}[2] \hat{\mathrm{y}}[1] \\ & +r_{1} \end{aligned}$	$\hat{x}[2] \hat{y}[2]$	$\left\{\begin{array}{l} \frac{\hat{\mathrm{x}}[2] \hat{\mathrm{y}}[3]}{} \\ +r_{3} \end{array}\right.$
$\begin{aligned} & \hat{\mathrm{x}}[3] \hat{\mathrm{y}}[1] \\ & +r_{2} \end{aligned}$	$\begin{array}{\|l\|} \hat{\hat{x}}[3] \underline{\hat{y}}[2] \\ +r_{3} \end{array}$	人̂[3] $\hat{y}[3]$

- It requires $\frac{\ell d(d+1)}{2}$ random bits and runs in $\mathcal{O}\left(\ell d^{2}\right)$ to protect a circuit of size $\mathcal{O}(\ell)$

Example: the ISW Multiplicaition with 3 Shares

- Proposed by Yuval Ishai, Amit Sahai and David Wagner at CRYPTO '03. - Input: $\hat{\mathbf{x}}[1], \hat{\mathbf{x}}[2], \hat{\mathbf{x}}[3]$ and $\hat{\mathbf{y}}[1], \hat{\mathbf{y}}[2], \hat{\mathbf{y}}[3]$, Output: $\hat{\mathbf{z}}[1], \hat{\mathbf{z}}[2], \hat{\mathbf{z}}[3]$

$\hat{\mathrm{x}}[1] \hat{\mathrm{y}}$ [1]	$\frac{\hat{\mathrm{x}}[1] \underline{\hat{y}}[2]}{r_{1}} \underline{ }$	$\frac{\hat{\mathrm{x}}[1] \hat{\mathrm{y}}[3]}{}$
$\begin{aligned} & \hat{\mathrm{x}}[2] \hat{\mathrm{y}}[1] \\ & +r_{1} \\ & \hline \end{aligned}$	$\hat{x}[2] \hat{y}[2]$	$\left\{\begin{array}{l} \frac{\hat{\mathbf{x}}[2] \hat{y}[3]}{+r_{3}} \end{array}\right.$
$\begin{aligned} & \hat{\mathrm{x}}[3] \hat{\mathrm{y}}[1] \\ & +r_{2} \end{aligned}$	$\begin{aligned} & \frac{\hat{\mathbf{x}}}{}[3] \underline{\hat{y}}[2] \\ & \hline+r_{3} \end{aligned}$	人f[3] \hat{y} [3]

- It requires $\frac{\ell d(d+1)}{2}$ random bits and runs in $\mathcal{O}\left(\ell d^{2}\right)$ to protect a circuit of size $\mathcal{O}(\ell)$.

Goal: Reducing the Overheads

- Two approaches
- Cost amortization
- Weijia Wang et al.: Side-Channel Masking with Common Shares. TCHES 2022.
- Precomputation
- Weijia Wang et al.: Efficient Private Circuits with Precomputation. TCHES 2023.
- Application to the masked AES and SKINNY

Table of Contents

(1) Backgrounds

(2) Two Approaches

- Cost amortization
- Precomputation-based Design Paradigm
(3) Application

4. Conclusion

Table of Contents

(1) Backgrounds
(2) Two Approaches

- Cost amortization
- Precomputation-based Design Paradigm
(3) Application

4. Conclusion

Cost amortization

Goal: reducing the required random bits.

- Common shares: some shares of different variables are the same.
- Randomness can be reused among different operations.

Asymptotic complexity for a circuit of size $\mathcal{O}(\ell)$:

- The randomness complexity decrease: $\mathcal{O}\left(\ell d^{2}\right) \rightarrow \tilde{\mathcal{O}}\left(d^{2}\right)$
- The computational complexity does not change: $\tilde{\mathcal{O}}\left(\ell d^{2}\right)$

Two Types of Sharings

- Boolean sharing:
- Secret variable $x \xrightarrow{\text { rand }}$ shares $\hat{\mathbf{x}}[1], \ldots, \hat{\mathbf{x}}[d+1]$ such that $x=\hat{\mathbf{x}}[1] \oplus \ldots \oplus \hat{\mathbf{x}}[d+1]$
- Common shares are insecure.
- Sharing of $x: \hat{x}[1], \hat{s}[1], \ldots, \hat{s}[d]$
- Sharing of $y: \hat{y}[1], \hat{\mathbf{s}}[1], \ldots, \hat{s}[d]$
- $\hat{x}[1] \oplus \hat{y}[1]=x \oplus y$
- Inner product sharing.

Two Types of Sharings

- Boolean sharing:
- Secret variable $x \xrightarrow{\text { rand }}$ shares $\hat{\mathbf{x}}[1], \ldots, \hat{\mathbf{x}}[d+1]$ such that $x=\hat{\mathbf{x}}[1] \oplus \ldots \oplus \hat{\mathbf{x}}[d+1]$
- Common shares are insecure.
- Sharing of $x: \hat{\mathbf{x}}[1], \hat{\mathbf{s}}[1], \ldots, \hat{\mathbf{s}}[d]$
- Sharing of $y: \hat{\mathbf{y}}[1], \hat{\mathbf{s}}[1], \ldots, \hat{\mathbf{s}}[d]$
- $\hat{\mathbf{x}}[1] \oplus \hat{\mathbf{y}}[1]=x \oplus y$
- Inner product sharing:
- Secret variable $x \xrightarrow{\text { rand }}$ shares $\hat{\mathbf{x}}[1], \ldots, \hat{\mathbf{x}}[d+1]$ such that $x=\hat{\mathbf{x}}[1] \oplus a_{1} \hat{\mathbf{x}}[2] \oplus \ldots, a_{d} \hat{\mathbf{x}}[d+1]$
- Common shares can be secure!
- Sharing of $x: \hat{\mathbf{x}}[1], \hat{\mathrm{s}}[1], \ldots, \hat{\mathrm{s}}[d]$ such that $x=\hat{\mathrm{x}}[1] \oplus a_{1} \hat{S}[1] \oplus \ldots \oplus a_{d} \hat{\mathrm{~S}}[d]$
- Sharing of $y: \hat{\mathbf{y}}[1], \hat{\mathrm{s}}[1], \ldots, \hat{\mathrm{s}}[d]$ such that $y=\hat{\mathrm{x}}[1] \oplus b_{1} \hat{\mathrm{~s}}[1] \oplus \ldots \oplus b_{d} \hat{\mathrm{~s}}[d]$
- Still d-probing secure if $\left(1, a_{1}, \ldots, a_{d}\right)$ and $\left(1, b_{1}, \ldots, b_{d}\right)$ are linearly independent.

Masked Multiplications with Common Shares

- Input of Refresh: Boolean sharings.
- Output of Refresh: inner product sharings, allowing:
- common shares;
- randomness reuse.
- Output of Multiplicaiton:
- Boolean shares.

Table of Contents

(1) Backgrounds
(2) Two Approaches

- Cost amortization
- Precomputation-based Design Paradigm
(3) Application
(4) Conclusion

Precomputation-based Design Paradigm

Challenge-Response Protocol

Execute precomputation phase with randomness
$\mathrm{pv}=\mathrm{p}$ (random)
Execute online phase
$\mathrm{r} _\mathrm{s}=\mathrm{o}(\mathrm{challenge}$, shared_key, pv)
Compare r_c with r_s

An Example of the Paradigm

An example for $c=a b(a \oplus b)$ using multiplication, addition and refresh gadgets

New Masking Multiplication: $\mathrm{Mul}_{k}(k \leq d+1)$

- Input: $x_{1 \ldots k}, y_{1 \ldots k}$. Output: $z_{1 \ldots k}$
- The Mul_{k} is a recursive structure composed of 2 parts: Mul_{k-1} and computation of z_{k}
- Mul_{k-1} computes temporary values $u_{1: k-1}$.
- Random variables $r_{1 \ldots k-1}$ are used as output shares $z_{1 \ldots k-1}$
- Carefully arrange operation orders for the security.
- Each output probe gives knowledge of at most one input share in the same index as the output probe
- Each internal probe gives knowledge of at most one input share

Mul_{d+1} with precomputation

Precomputation of Mul_{d+1}
Run in $O\left(d^{2}\right)$, produce $O(d)$ values and require $O\left(d^{2}\right)$ random values

Mul_{d+1} with precomputation

Online computation of Mul_{d+1}
Run in $O(d)$ without any random value

Table of Contents

```
(1) Backgrounds
(2) Two Approaches
- Cost amortization
- Precomputation-based Design Paradigm
```

(3) Application
4. Conclusion

Implementation Results

		d	Kcycles for precomp.	Random bits	RAM for precomp.	Kcycles for online.
AES	[GR 17]	2	-	3.75 KB	3.75 KB	83.9
	[VV 21]	2	72590	0.011 KB	40.1 KB	423
	Our work A	2	705	96 Bytes	5.63 KB	60
	Our work B	2	67.98	2.22 KB	2.91 KB	50.03
	[GR 17]	8		45 KB	45 KB	404.5
	[VV 21]	8	3265303	0.56 KB	40.8 KB	2873
	Our work A	8	3662	1.5 KB	11 KB	137
	Our work B	8	446.34	23.88 KB	11.66 KB	92.27
$\begin{gathered} \text { SKINNY } \\ -128 \end{gathered}$	Our work B	2	159.28	1.91 KB	3.03 KB	75.48
	Our work B	8	749.2	22.62 KB	12.12 KB	117.72

- [GR 17]: State-of-the-art result with bitslicing without cost amortization or precomputation
- [VV 21]: State-of-the-art result with precomputation using look-up tables
- Our work A: Cost amortization \& precomputation, but no bitslicing
- Our work B: Bitslicing \& precomputation, but no cost amortization

Table of Contents

```
(1) Backgrounds
(2) Two Approaches
- Cost amortization
- Precomputation-based Design Paradigm
```

(3) Application

4 Conclusion

Conclusion

- Reducing the overhead of masking:
- Cost amortized multiplication gadget with common shares
- The randomness decreases: $\tilde{\mathcal{O}}\left(\ell d^{2}\right) \rightarrow \tilde{\mathcal{O}}\left(d^{2}\right)$
- Precomputation-based design paradigm for masking
- Pre-computation phase: $\tilde{\mathcal{O}}\left(\ell d^{2}\right)$ (computational), $\tilde{\mathcal{O}}\left(d^{2}\right)$ (randomness).
- Online phase: $\mathcal{O}(\ell d)$ (computational), without any randomness.
- Applications
- Saving a large amount of random bits
- A speed-up for the online phase.

Conclusion

- Reducing the overhead of masking:
- Cost amortized multiplication gadget with common shares
- The randomness decreases: $\tilde{\mathcal{O}}\left(\ell d^{2}\right) \rightarrow \tilde{\mathcal{O}}\left(d^{2}\right)$
- Precomputation-based design paradigm for masking
- Pre-computation phase: $\tilde{\mathcal{O}}\left(\ell d^{2}\right)$ (computational), $\tilde{\mathcal{O}}\left(d^{2}\right)$ (randomness).
- Online phase: $\mathcal{O}(\ell d)$ (computational), without any randomness.
- Applications
- Saving a large amount of random bits
- A speed-up for the online phase.

Precomputation-based design paradigm

Cost amortization

Thank You!

