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White-Box Cryptography

• Goal: prevents the cryptographic algorithm from the key extraction in white-box context.

• Technique: applies the encoding to hide the sensitive information.

• Framework:

• CEJO (SAC’02): a network of look-up tables (LUTs) with linear/non-linear encodings.

• Self-equivalence (SAC’20): hides the key in the affine layer with self-equivalence encodings.

• Implicit function (CRYPTO’22): hides the key in the binary multivariate polynomials with
self-equivalence and linear/non-linear encodings.

4 / 56



LUTs in CEJO Framework

• At SAC 2002, Chow et al. proposed the CEJO framework.
• It transforms the round function into a series of look-up tables (LUTs) with embedded
secret key and applies linear/non-linear encodings to protect the LUTs.

Figure: Type II: key-dependent
T-boxes/Tyi table

Figure: Type III: compatibility of
encodings between consecutive
rounds

Figure: Type IV:
encoded nibble XOR
table
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Self-Equivalence Encodings

• At SAC 2020, Ranea and Preneel proposed the self-equivalence framework.

Definition

(Self-equivalence). Let F be an n-bit function. A pair of n-bit affine permutations (A,B) such
that F = B ◦ F ◦ A is called an (affine) self-equivalence of F .

• Self-equivalence of Sbox: S = B ◦ S ◦ A.
• Round function: E = L ◦ S ◦ ⊕k .

⇒ Self-equivalence round function: L ◦ B ◦ S ◦ A ◦ ⊕k.
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Self-Equivalence White-Box Implementation

• Let ALr = A ◦ ⊕k r ◦ L ◦ B.
• Round functions:

Ēn
kn ◦ · · · ◦ Ē 1

k1 = (L ◦ B) ◦ S ◦ (A ◦ ⊕kn ◦ L ◦ B) ◦ S ◦ · · · ◦ S ◦ (A ◦ ⊕k1)

= (L ◦ B) ◦ S ◦ ALn ◦ S ◦ · · · ◦ S ◦ AL2 ◦ S ◦ (A ◦ ⊕k1).
• Introducing the external encodings P and Q such that:

ALn+1 = Q ◦ L ◦ B, AL1 = A ◦ ⊕k1 ◦ P.

• Encoded encryption: Ēk = ALn+1 ◦ S ◦ · · · ◦ S ◦ AL1

⇒ consists of the affine function AL and the substitution S .
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Algebraic Attacks against CEJO and Self-Equivalence

• CEJO:
• SASAS ⇒ ASA ⇒ affine equivalence problems.
• CEJO-WBAES: time complexity 222, XL-WBAES: time complexity 232.

• Self-Equivalence:
• Sparse matrix.
• Diagonal encodings.
• A few pairs of self-equivalences: 2040 of AES and SM4 Sbox.

• Both frameworks apply small encodings to protect a small SBox.

• New direction: large substitution layer with many pairs of self-equivalences and large
dimension of encodings.
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Self-Equivalence White-Box SPECK

At ACNS 2022, Vandersmissen et al. proposed a self-equivalence white-box SPECK
(SE-SPECK) implementations.

• Transforming the ARX to SPN:

Ek = (AL(nr ) ◦ S) ◦ · · · ◦ (AL(1) ◦ S) ◦ AL(0).
8 Joachim Vandersmissen, Adrián Ranea, and Bart Preneel

k(r)

x(r) ≫ α

y(r) ≪ β

k(r+1)

≫ α x(r+2)

≪ β y(r+2)

Fig. 1. Diagram of two speck encryption rounds, with affine layers indicated using
dotted lines.

X represents the bitwise XOR operation such that y = x⊕ y. Finally, k′(r) is a
vector of length 2n containing the key bits of the round key k(r) in the first n
positions and zero in the last n positions.

To protect the key material in AL(r), we need to encode the affine layers. Let
us first introduce the definitions of an encoding.

Definition 4 (Encoding, [36]). Let F be an (n, m)-bit function and let (I,O)
be a pair of n-bit and m-bit permutations, respectively. The function F = O◦F ◦I
is called an encoded F , and I and O are called the input and output encoding,
respectively.

In our design, the encodings I and O will mainly be self-equivalences of
SL when an affine layer is encoded. Therefore, we call these encodings self-
equivalence encodings. However, the input encoding of the first affine layer and
the output encoding of the last affine layer must be random affine permutations,
called the external encodings. It is critical to the security of white-box implemen-
tations that these external encodings are generated at random and kept secret
from the attacker. Without external encodings, our design would be trivially
insecure [19]. Now, we define the encoded affine layers.

Definition 5 (Encoded affine layer, [36]). Let AL(r) be an affine layer of

the speck cipher, with 1 ≤ r ≤ nr. Then we call AL(r) an encoded affine layer,
with:

AL(r) = (⊕o(r) ◦O(r)) ◦AL(r) ◦(⊕i(r) ◦ I(r)),
where ((O(r), o(r)), (I(r+1), i(r+1))) is a self-equivalence of the speck substitution
layer SL, and (I(1), i(1)) and (O(nr), o(nr)) are random affine permutations.

Note that AL(0) will not be encoded: this affine layer does not contain any key
material, so it can be skipped.

If the self-equivalences composed with each AL(r) are sampled randomly from
a set of self-equivalences, the unencoded affine layer AL(r) can not be recovered
without knowledge of (I(r), i(r)) and (O(r), o(r)). This effectively hides the round
keys inside the affine layers, and is the basis of our method to protect speck
implementations using self-equivalence encodings. Moreover, this process could
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Self-Equivalence White-Box SPECK

• Let AL(r) = A ◦ AL(r) ◦ B, S = B ◦ S ◦ A,

E ′
k = (AL(n) ◦ B) ◦ S ◦ (A ◦ AL(r) ◦ B) ◦ S ◦ · · · ◦ S ◦ AL(0)

= (AL(n) ◦ B) ◦ S ◦ AL(n) ◦ S ◦ · · · ◦ S ◦ AL(1) ◦ S ◦ AL(0).

• External encodings:

• For some random bijections I and O:

• AL(0) = AL(0) ◦ I .

• AL(n) = O ◦ AL(n) ◦ B.

10 / 56



Algebraic Attacks against SE-SPECK

• The key is embedded in the affine layer ALr = A ◦ ⊕k r ◦ L ◦ B.

• The self-equivalences A and B has the sparse matrices with 2n + 11 variable entries.

• The key can be recovered by constructing a system of linear equations based on a few of
unknown variables.
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Implicit Framework to ARX Ciphers

At CRYPTO 2022, Ranea et al. proposed an implicit framework to ARX Ciphers.

• Representing each round function by a low-degree implicit function (efficient
implementation).

• Encoding the implicit function with large affine permutations and even large non-linear
self-equivalences.

• Combining the large self-eqivalences with large affine encodings (hide the sparse matrix).
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Implicit Framework to ARX Ciphers

Definition

(Implicit function). Let F be an n-bit function. A (2n,m)-bit function P is called an implicit
function of F if it satisfies P(x , y) = 0⇔ y = F (x).

• I ,O ← round encodings, T ← implicit function of S , U ← (B−1,A) such that
S = B ◦ S ◦ A, V ← a random linear transformation.

• Implicit round function ⇒ linear system:

P(x , y) = V ◦ T ◦
(
(A ◦ ⊕k ◦ I (x),B−1 ◦ L−1 ◦ O−1(y)

)
) = 0

⇔ V ◦ B−1 ◦ L−1 ◦ O−1(y) = V ◦ S ◦ A ◦ ⊕k ◦ I (x)
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Implicit Framework to ARX Ciphers

• Let E = L ◦ S ◦ ⊕k , without the representation of an implicit function:

E (i) = C (i+1) ◦ E (i) ◦ A(i) ◦ B(i−1) ◦ (C (i))−1,

where
E (i) = B(i) ◦ E (i) ◦ A(i).

• The canceling rule of the implicit self-equivalence implementation:

which satisfy the cancellation rule I(i+1) ◦O(i) = Idn. While both Eqn. (8) and
Eqn. (9) define the same encoded round function, we will use Eqn. (8) where
the output round encoding is affine to preserve the quasilinear property (see
Sect. 3.1).

Fig. 2. Two consecutive encoded rounds, E(i) and E(i+1), with the round encodings
defined by Eqn. (8). Rounded blocks denote affine functions and rectangular blocks
denote non-linear functions.

As a result, we have built an implicit implementation of Ek given by the
quasilinear implicit functions {P (1), P (2), . . . , P (nr)}. Let Ek be the underlying
encoded implementation, whose round encodings are given by Eqn. (8). Note
that Ek is not functionally equivalent to Ek since

Ek =
(
C(nr+1) ◦ (B(nr))−1

)
◦ Ek ◦

(
B(0) ◦ (C(1))−1

)
.

Thus, the implicit implementation is not functionally equivalent to Ek either.
The degree of the implicit round functions P (i) depends on whether affine-

quadratic self-equivalences are used in the round encodings. If they are not used,
the functions P (i) are quadratic. Otherwise, the functions P (i) are quartic or even
cubic if the affine-quadratic self-equivalences are chosen carefully.

Table 1 shows an upper bound on the memory required by an implicit round
function for different degrees and bitsizes. As shown in the table, implicit imple-
mentations with bitsize n = 64 are quite practical; for bitsize n = 128 implicit
implementations are practical with quadratic or cubic rounds.

Note that an implementation with multivariate binary polynomials of the
underlying encoded implementation would be infeasible (even without affine-
quadratic self-equivalences) due to its size, since the permuted modular addition
has degree n. A CEJO implementation of the underlying encoded implementa-
tion would also have impractical size as the non-linear layer cannot be written
as the composition of smaller functions. While an implicit implementation in-
troduces a significant overhead in the running time and a severe overhead in the
size as shown in Table 1, the implicit framework is the first method that provides
practical white-box implementations of ARX ciphers.

Security Analysis. Let I be an implicit implementation following the method
described in this section, and let Ek be the underlying block cipher with the

24
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Algebraic Attacks against Implicit Framework

• The key is embedded in the implicit round function:

E (i) = C (i+1) ◦ (B(i))−1 ◦ E (i)
k ◦ B(i−1) ◦ (C (i))−1.

• The quadratic self-equivalences B is extremely sparse with a few monomials, up to affine
equivalence.

• The key recovery on the structure ASA with modular addition S .

• Time complexity O(n9)/O(n6) with/without external encodings [BLU23].
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Differential Computation Analysis

At CHES 2016, differential computation analysis (DCA) was proposed to perform a statistical
analysis on the computation traces of white-box implementations.

• Noise-Free Computation Traces

The first/last-round computed values
(accessed memory/register) by using DBI
tools.

• Differential Power Analysis

Dividing the traces in two distinct sets
based on key guesses, computing the
difference of two sets, distinguishing the
correct key with the highest peak.

plaintext plaintext

encrypt Sbox

...0101101110011...

intermediate state

k*

intermediate state (simulated)
k*

correct key guess
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Differences between Algebraic Attack and DCA

Difference Algebraic Attack DCA

Context white-box gray-box

Process
1) unpacks the obfuscation layers

1) collects the computation traces
2) pinpoints the target function

2) analyzes the traces
3) decodes the encoded structure

Reverse Engineering required not required

Time Complexity
algebraic attack

computation analysis+ reverse engineering
(extra skills and time)
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Computation Analysis (CA)

• Following DCA, many other computation analyses are proposed.
• F = N ◦ L← the internal encoding, φ← a sensitive function.

Distinguisher
Attack

Method
Analysis of Time

Context Key Leakage Complexity

DCA [BHMT16]

gray-box

correlation

- 222

IDCA [BBB+19] HW = 1 of L 227

CPA [RW19]
computation non-injection of φ

222

CA [RW19]
bijection of F

229

MIA [RW19] 222

SA [SMG16]
spectral

- 227

MSA [LJK20]
analysis

imbalance of L 222

ISA [CGM21] white-box non-invertibility of L 232

ADCA [TGLZ23] gray-box
detection of

dalg (F ) ≤ 6 221.32 ∼ 224.07
algebraic degree
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Algebraic Degree Computation Analysis

At CHES 2023, Tang et al. proposed the algebraic degree computation analysis (ADCA).

• It can distinguish the correct key by computing the algebraic degrees of target functions.

• ADCA can break the most cases of encodings with the lowest time complexity.

• k∗ ← secret key,
Target function Ok∗ = F ◦ S ◦ ⊕k∗.
• k ← key guess,
Chosen input x ′ = ⊕k ◦ S−1(x).

• If k = k∗, Ak∗ = F which is the internal encoding.

• If k ̸= k∗, Ak = F ◦ S ◦ ⊕k∗ ◦ ⊕k ◦ S−1 which a
random function.

• 对于攻击函数Ok∗ = 𝐹 ∘ 𝑆 ∘⊕𝑘∗

• 选择明文𝑥 ′ =⊕ 𝑘 ∘ 𝑆−1(𝑥)：

• 当猜测密钥𝑘 = 𝑘∗时，𝐴𝑘∗ = 𝐹，即为内部编码函数；

• 当猜测密钥𝑘 ≠ 𝑘∗时，𝐴𝑘 = 𝐹 ∘ 𝑆 ∘⊕𝑘∗∘⊕ 𝑘 ∘ 𝑆−1，

即为“随机”函数.

密钥猜测模型
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Analysis of DCA against ARX Structure

• Targeting the first-round key addition.

⋙ 𝛼

⋘ 𝛽

⊞ ⊕

𝑘(1)

⊕





𝑥0
(1)

𝑥1
(1)

Round-1



target value 𝑦

𝑥0
(2)

𝑥1
(2)

trace 𝒗

• Targeting the second-round modular
addition.

⋙ 𝛼

⋘ 𝛽

⊞ ⊕

𝑘(1)

⊕





⋙ 𝛼

⋘ 𝛽

⊞ ⊕

𝑘(2)

⊕





𝑥0
(1)

𝑥1
(1)

Round-1 Round-2



target value 𝑦

𝑥0
(3)

𝑥1
(3)

trace 𝒗
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Simplified Target Functions

• The first-round key addition.

y =
(
(x

(1)
0 ≫ α)⊞ x

(1)
1

)
⊕ k

⇒ y = (x ⊞ c1)⊕ k

= S1(x)⊕ k

• Key addition after substitution.

• The second-round modular addition.

y =
(((

(x
(1)
0 ≫ α)⊞ x

(1)
1

)
⊕ k

)
≫ α

)
⊞

(
(x1 ≪ β)⊕

(
(x

(1)
0 ≫ α)⊞ x

(1)
1

)
⊕ k

)

⇒ y = ((x ⊞ c1)⊕ k)⊞ (c2 ⊕ (x ⊞ c1)⊕ k)

= S2(S1(x)⊕ k, S1(x)⊕ k ⊕ c2)

• Substitution after key addition.

22 / 56



DCA on SPECK

• Result: For both two target functions, DCA obtains the highest correlation 1 for every key
guess and fails to distinguish the correct key.

• Reason:
• The modular addition lacks confusion to fully obfuscate the key information.
• The sensitive values of different key candidates are similar to each other.
• At least one bit of the sensitive values for an incorrect key guess is equal to one bit of the

sensitive values corresponding to the correct key.
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Sum-Correlation DCA

• Principal:
• Each bit of the sensitive values for the correct key has correlation 1.
• The correct key has the maximum summed correlations.

• For each key guess, SC-DCA computes the correlation between each bit of the sensitive
value (φk(x))i and each sample in the traces v j .

• It sums the maximum computed correlations of every bit in the sensitive value.

• SC-DCA distinguisher:

δSC−DCA
k = arg max

∑

1≤i≤n

max1≤j≤t |Cor((φk(x))i , v j)|
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SC-DCA on (White-Box) SPECK

• SC-DCA on SPECK32:
• can successfully distinguish the correct key with the maximum summed correlation 16.
• Time complexity 238 with 4096 traces.

• SC-DCA on white-box SPECK32:
• extracts an incorrect key for both SE-SPECK32 and IF-SPECK32.
• does not consider the encoding phases which obfuscate the sensitive values against DCA.
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Encoded Structure of SE-SPECK

The first three encryption rounds of SE-SPECK without external encodings:

⋙ 𝛼

𝑘(1)

𝑥0
(1)

𝑥1
(1)

𝑥0
(4)

𝑥1
(4)

⋘ 𝛽

⊞ ⊕

⊕





⋙ 𝛼

𝐴(1)

⋘ 𝛽

⊞ ⊕

⊕





⋙ 𝛼
𝐵(2) 𝐴(2)

𝑘(2)

Round-1 Round-2 Round-3

𝐴𝐿(0) 𝐴𝐿 1 𝐴𝐿 2𝑆 𝑆

26 / 56



Encoded Structure of IF-SPECK

• Without external encoding, the first encoded round function is defined as

E (1) = C (2) ◦ E (1) ◦ A(1) = C (2) ◦ (B(1))−1 ◦ E (1).

• The encoded structure of the first two rounds:

⋙ 𝛼𝑥0
(1)

𝑥1
(1)

𝑥0
(3)

𝑥1
(3)

⊞



Round-1 Round-2

𝑘(1)

⋘ 𝛽

⊕

⊕

 ⋙ 𝛼

𝐵 1 −1
⊞



𝑆𝐴𝐿(1)

𝐶(2)

• If B(1) is affine, E (1) is encoded by affine encoding.

• If B(1) is quadratic, E (1) is encoded by non-linear encoding with unknown (low) degree.
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A Same Structure of SE-SPECK and IF-SEPCK

• By analyzing the round functions of SE-SPECK and IF-SPECK without external
encodings, we can obtain a function F which has the same structure as the first two
rounds in both two white-box implementations.

⋙ 𝛼𝑥0
(1)

𝑥1
(1)

⊞



𝑘(1)

⋘ 𝛽

⊕

⊕

 ⋙ 𝛼 𝑦0

𝑦1
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An Encoded Structure of SE-SPECK and IF-SEPCK

• Combining the first three rounds of SE-SPECK and the first two rounds of IF-SPECK:

𝑥0
(3)

𝑥1
(3)

𝑥0
(4)

𝑥1
(4)

𝐴(1)

⋘ 𝛽

⊞ ⊕

⊕





⋙ 𝛼
𝐵(2) 𝐴(2)

𝑘(2) Round-1, 2, 3

Round-1, 2

𝑥0
(1)

𝑥1
(1)

𝑥0
(1)

𝑥1
(1)

⊞



𝐸𝐶

𝑥0
(1)

𝑥1
(1)

𝑠0

𝑠1

SE-SPECK

IF-SPECK

equivalent structure

self-equivalence affine/quadratic encoding

𝐹

𝐹

𝐹

𝑦0

𝑦1

𝑦0

𝑦1

𝑦0

𝑦1

𝑆

⊞



𝐶(2)𝐵 1 −1
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An Encoded Structure of SE-SPECK and IF-SEPCK

• The target function of SE-SPECK and IF-SEPCK:

⋙ 𝛼𝑥0

𝑥1

⊞



𝑘∗

⋘ 𝛽

⊕

⊕

 ⋙ 𝛼 ⊞



𝐸𝐶

𝑠0

𝑠1

𝑡0

𝑡1

𝑦0

𝑦1

𝐹

• The collected computation traces consist of (s0, s1).

• The sensitive values (t0, t1) are protected by a linear/non-linear encoding EC .

• Its construction is irrelevant to the implicit function and the input encoding.
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CA on SE-SPECK and IF-SPECK

• With a key guess k and an input x , CA
computes a sensitive vector
(z1, z2, · · · , z2n).

• CA intends to computes the correlation
between zi and yi .

• Because of encoding EC , CA needs to
enumerate the combination of
(z1, z2, · · · , z2n).

𝐸𝐶𝐹

𝑘

⊕ ⊞



𝑥 𝑦

(𝑧1, 𝑧2, ⋯ , 𝑧2𝑛) 𝑦𝑖

encoding 𝐶 ∘ 𝐵−1 with unknown degree

2n bits 1 bit
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Challenges of CA against White-Box ARX

• Large spaces of inputs and key candidates: CA needs to compute the outputs of the
modular addition based on the inputs and key guesses.

• Large encoding: CA needs to enumerate the linear combination of the sensitive values to
recover the affine encoding. Moreover, it is hard to defeat the quadratic encoding.
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An Overview of CP-CA

A Chosen-Plaintext Computation Analysis (CP-CA) attack consists of the following three
phases:

• Adaptive chosen plaintexts: constructs an adaptive function with a key guess to compute
the plaintexts with chosen inputs (principal: a small subset of the full space).

• Correlation computation: invokes the algorithm with the obtained plaintexts and applies
the existing computation analysis methods, such as DCA and ADCA to analyze the
computation traces.

• Iterative attack: repeats for other key candidates. Distinguishing the correct key based on
the ranking method of the corresponding computation analysis.
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Adaptive Function

An adaptive function:

• is applied to choose the plaintexts of the
cryptographic algorithm.

• is constructed by some reverse steps of
the cryptographic algorithm.

• needs to be instantiated by a key guess.
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Adaptive Function

• The adaptive function Gk calculates the plaintexts (x0, x1) by the inverse of (t0, t1).

⋙ 𝛼𝑥0

𝑥1

⊞



𝑘∗

⋘ 𝛽

⊕

⊕

 ⋙ 𝛼
𝐸𝐶

𝑠0

𝑠1

encoded function 𝐹𝑘∗
′

⋘ 𝛼𝑧0

𝑧1

⊟

⋙ 𝛽

⊕

𝑘

⊕

 ⋘ 𝛼



⊟



adaptive function 𝐺𝑘 plaintexts traceschosen inputs

⊞



𝑡0

𝑡1

• If key guess k equals to the correct key k∗, (t0, t1) = (z0, z1).

• Otherwise, (t0, t1) are almost random values.
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(In)Correct Key Guess

If key guess is correct:

• The collected values (s0, s1) are equal to
the outputs of an affine/non-linear
function EC (z0, z1).

• If EC is affine, (s0, s1) are linear
combinations of (z0, z1).

• If EC is non-linear, (s0, s1) can be
represented by a degree-d ANF of (z0, z1).

If key guess is incorrect:

• (s0, s1) are correlated to random (t0, t1).

𝑥0

𝑥1

𝐸𝐶

𝑠0

𝑠1

𝐹𝑘∗
′

𝑧0

𝑧1

𝑡0

𝑡1

𝐺𝑘∗ 𝐹𝑘∗

equality
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Affine Self-Equivalence

Theorem

Let z ∈ {0, 1}na denote an na-bit vector, c be an n-bit constant, and C0 represent an
(nb (= n − na))-bit zero vector. Given an 2n-bit affine function AE : F2n

2 7→ F2n
2 , the resulting

vector AE (C0 ∥ z , c) can also be computed as L′ · z ⊕ l , where L′ is a 2n × na matrix and
l ∈ {0, 1}2n.

• If EC is affine, (s0, s1) are linear combinations of z .

• For SPECK32,

(z0, z1) = (00000000000000 ∥ z , 00ff00ff00ff00ff)

• (s0, s1) = EC · (z0, z1) = AE · (z) for some unknown affine function AE .
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Quadratic Self-Equivalence

• If EC is quadratic, (s0, s1) are still linear combinations of z .

• Because of these fixed input bits, some variables in the monomials of the ANF
representations of EC are constants with degree 0.

• For an instance of the degree-2 quadratic encoding case, the probability p that a
monomial in the ANF has degree 2 is

p =

(
na
2

)
/

(
2n

2

)
=

na(na − 1)

2n(2n − 1)
.

Block size 32 48 64 96 128

p 5.65% 2.48% 1.39% 0.61% 0.34%
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CP-DCA

• CP-DCA calculates the correlation between a subset of linear combinations of the chosen
inputs and the samples of traces.

• The key guess with the maximum number of the highest correlation is the most likely
correct.

Corollary

Let yi (1 ≤ i ≤ 2n) denote the output coordinate of AE (C0 ∥ z , c). There exist 2n linear
combinations L of z satisfying |Cor(L · z , yi )| = 1.
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CP-DCA Distinguisher

• The CP-DCA distinguisher δCP−DCA
k is defined as follows.

δCP−DCA
k = arg max #

{
max

∣∣∣Cor
(
L · z(i), (v (i))j

)∣∣∣
}

𝐺𝑘

𝑧0 𝑧1 = 𝑐

𝑛

𝑧 ∈ 0,1 𝑛𝑎

0

𝑛

𝑛𝑎𝑛𝑏 = 𝑛 − 𝑛𝑎

𝐸𝑘∗

𝑛𝑛

𝑛𝑛

𝑥0 𝑥1

𝑛
𝑘

𝒗

𝐿

{0,1}

correlation computation

linear combinations

𝑡
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Time Complexity of CP-DCA

• Traces collection: O(|K| · N) with |K| ← key space, N ← input space.

• Correlation computation: O(|K| · 2na · t · N) with 2na linear combinations, t ← the
number of trace samples.

• Searching for the highest correlation: O(|K| · 2na).

• Overall time complexity: O(|K| · 2na · t · N).
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CP-ADCA

• The degree-1 CP-ADCA constructs a linear system that consists of the coordinates of
x ∈ X and each sample of v .
• The key guess with the maximum number of solvable linear systems is the most likely
correct one.

Corollary

Let yi (1 ≤ i ≤ 2n) denote the output coordinate of AE (C0 ∥ z , c). Let Zj (1 ≤ j ≤ na)
denote the bits of z. There exist 2n vectors a = (a0, a1, · · · , ana) satisfying

[1 Z1 · · · Zna ] · aT = yi , for 1 ≤ i ≤ 2n.

44 / 56



CP-ADCA Distinguisher

• The CP-ADCA distinguisher δCP−ADCA
k is defined as follows.

δCP−ADCA
k = arg max # {r(Z ) ≥ r(Z | vi )}

𝐺𝑘

𝑧0 𝑧1 = 𝑐

𝑛

𝑧(𝑗) ∈ 0,1 𝑛𝑎 , 𝑗 ∈ [𝑁]

0

𝑛

𝑛𝑎𝑛𝑏 = 𝑛 − 𝑛𝑎

𝐸𝑘∗

𝑛𝑛

𝑛𝑛

𝑥0 𝑥1

𝑛
Key guess 𝑘

𝒗 = 0,1 𝑡

𝑍 ⋅ 𝑎 = 𝑣𝑖

𝑣𝑖 = 0,1 , 𝑖 ∈ [𝑡]

each sample

𝑡

𝑁 traces

𝑁 inputs
1 𝑍1

1
𝑍2

1
⋯ 𝑍𝑛𝑎

1

1 𝑍1
2

𝑍2
2

⋯ 𝑍𝑛𝑎
2

⋮ ⋮ ⋮ ⋱ ⋮

1 𝑍1
𝑁

𝑍2
(𝑁)

⋯ 𝑍𝑛𝑎
(𝑁)

⋅

𝑎0
𝑎1
𝑎2
⋮

𝑎𝑛𝑎

=

𝑣𝑖
(1)

𝑣𝑖
(2)

⋮

𝑣𝑖
(𝑁)

solvable?

linear system
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Time Complexity of ADCA

• Traces collection: O(|K| · N) with |K| ← key space, N ← input space.

• Computation of linear systems: O(|K| · t · N · (na + 1)) with the steps for calculating
r(Z | vi ) are N · (na + 1), t ← the number of trace samples.

• Searching for the maximum number of solvable linear systems: O(|K|).

• Overall time complexity: O(|K| · t · N · (na + 1)).
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Parameters of CP-DCA and CP-ADCA

• CP-CA can be instantiated with different parameters, such as the chosen input space na,
the constant input c , the number of traces N, the number of trace samples t.

Block size nb na c N t
Time complexity

CP-DCA CP-ADCA DCA AC

32 8

8

00ff

256

32 237 231.32 269 230∼ 245

48 16 ff00ff 48 245.58 239.90 2101.58 233∼ 250

64 24 00ff00ff 64 254 248.32 2134 236 ∼ 254

96 40 00ff00ff00ff 96 270.58 264.90 2198.58 239 ∼ 259

128 56 00ff00ff00ff00ff 128 287 281.32 2263 242 ∼ 263
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Simulations

• Performing the simulations of CP-DCA and CP-ADCA against the 32-bit encoded
structure with affine output encodings.

• CP-DCA and CP-ADCA can successfully recover the secret key for the 32-bit block size.

Attack
Block Key guess Count of recovered

size Range Count Key Encoding

CP-DCA
32 0000− ffff 216 1 32

CP-ADCA
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SE-SPECK and IF-SPECK implementations

• Implement SE-SPECK and IF-SPECK with block sizes 32 and 48 thorough the
open-source scripts.

• Intel Core i7-11800H processor @2.30GHz and 40GB RAM.

Cipher Encoding Degree
Source Code Binary size RAM Execution

size (MB) (MB) (MB) time (ms)

SE32/K64 affine - 0.08 0.04 1.11 0.06

SE48/K96 affine - 0.18 0.07 1.17 0.14

IF32/K64

affine 2 0.16 0.15 3.08 2.43

quadratic

2 0.16 0.15 3.15 2.46

3 1.85 1.82 5.30 11.63

4 17.45 17.41 24.43 83.33
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Practical attacks of CP-DCA and CP-ADCA

• CP-DCA and CP-ADCA can successfully distinguish the secret key over the full key space.

Cipher Encoding Degree

CP-DCA CP-ADCA

Count of recovered

Key Encoding Key Encoding

SE32/K64 affine -

1

18

1

19

SE48/K96 affine - 25 36

IF32/K64

affine 2

32 32
quadratic

2

3

4
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Compare with Chosen-Plaintext SCA

CP-CA:

• constructs an adaptive function →
computes the target plaintexts.

Adaptive Side-Channel Analysis (ASCA):

• analyzes the side-channel information →
choose the target plaintexts.
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Possible Countermeasure of CP-CA

• The quadratic non-linear encoding can be bypassed by the adaptive function of the
first-degree CP-CA.

• The possible countermeasure is to apply higher-degree non-linear encoding.

The open problems:

• The method to generate the higher-degree self-equivalences of modular addition?

• The resistance of higher-degree non-linear encoding against higher-degree CP-CA?
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Possible Improvement of CP-CA

• The most optimal choice for the parameters of ACP-DCA.
• The vector space of linear combinations,
• the number of required traces,
• and the constant inputs.

• Small key space. It costs a higher time complexity in the large block size cases.

• A specific analysis dedicated to the sparse affine self-equivalences.
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Conclusion

• The large spaces of inputs, key candidates, and encodings of ARX-based white-box
ciphers can prevent a practical DCA attack.

• CP-CA attacks exploit the chosen plaintexts phase to reduce the large affine encoding
into small linear one.

• The adaptive function can bypass the quadratic self-equivalence of IF-SPECK.

• SE-SPECK and IF-SPECK are vulnerable to CP-CA attacks.
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Thanks for your attention!
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