Unboxing ARX-based White-Box Ciphers: Chosen-Plaintext

Computation Analysis and Its Applications

Yufeng Tang!, Zheng Gong!, Liangju Zhao!, Di Li!, and Zhe Liu?

1School of Computer Science, South China Normal University

2Zhejiang Lab

ASK 2023, JNU, Guangzhou

1/56

1. ARX-Based White-Box Ciphers

2. Computation Analysis against White-Box SPECK
3. Chosen-Plaintext Computation Analysis

4. Attack Instances of CP-DCA and CP-ADCA

5. Conclusion

2/56

1. ARX-Based White-Box Ciphers

3/56

White-Box Cryptography

® Goal: prevents the cryptographic algorithm from the key extraction in white-box context.
® Technique: applies the encoding to hide the sensitive information.

® Framework:

e CEJO (SAC'02): a network of look-up tables (LUTs) with linear/non-linear encodings.

® Self-equivalence (SAC'20): hides the key in the affine layer with self-equivalence encodings.

® Implicit function (CRYPTO'22): hides the key in the binary multivariate polynomials with
self-equivalence and linear/non-linear encodings.

4/56

LUTs in CEJO Framework

e At SAC 2002, Chow et al. proposed the CEJO framework.
® |t transforms the round function into a series of look-up tables (LUTs) with embedded
secret key and applies linear/non-linear encodings to protect the LUTs.

oo

8x8
L

.
Ti;

Ty;

| | l N

32x32

o

_ Figure: Type Ill: compatibility of Figure: Type IV:
Figure: Type Il: key-dependent encodings between consecutive encoded nibble XOR
T-boxes/ Ty; table rounds table

5/56

Self-Equivalence Encodings

e At SAC 2020, Ranea and Preneel proposed the self-equivalence framework.

Definition

(Self-equivalence). Let F be an n-bit function. A pair of n-bit affine permutations (A, B) such
that F = Bo F o Ais called an (affine) self-equivalence of F.

® Self-equivalence of Sbox: S = Bo So A
® Round function: E = Lo 5 o ®k.

= Self-equivalence round function: Lo Bo S o Ao &k.

6/56

Self-Equivalence White-Box Implementation

o et ALl = Ao@k"oLoB.

® Round functions:
Efno---0ElL =(LoB)oSo(Ao@k"oLoB)oSo---0So(Aodk?)

= (LoB)oSoAL"0So---0S0Al%>0 S0 (Aodkl).

® Introducing the external encodings P and @ such that:
AL = QoLoB, ALY = Aokl o P.
¢ Encoded encryption: Ex = AL"™10So0-.-0So0 ALl

= consists of the affine function AL and the substitution S.

7/56

Algebraic Attacks against CEJO and Self-Equivalence

CEJO:

® SASAS = ASA = affine equivalence problems.
e CEJO-WBAES: time complexity 222, XL-WBAES: time complexity 232.

Self-Equivalence:

® Sparse matrix.
® Diagonal encodings.
® A few pairs of self-equivalences: 2040 of AES and SM4 Sbox.

Both frameworks apply small encodings to protect a small SBox.

® New direction: large substitution layer with many pairs of self-equivalences and large
dimension of encodings.

8/56

Self-Equivalence White-Box SPECK

At ACNS 2022, Vandersmissen et al. proposed a self-equivalence white-box SPECK
(SE-SPECK) implementations.

® Transforming the ARX to SPN:

Ex = (AL 0 S) o0 (AL 0 §) 0 AL,

k() L+
2 —>>a E] é >a E] é £(r+2)
y™) JW<<< B C) B {) y(r+2)

9/56

Self-Equivalence White-Box SPECK

o Let ALD =AcALN 6B, S=BoSoA,
E, = (ALM 0 B)oSo(AcALD 6 B)oSo-- 050 ALO

:(AL(")oB)oSoAL(”)oSo--~oSoAL(1)oSoAL(O)_

® External encodings:

® For some random bijections / and O:

o AL(O) = ALO 6.

o AL(N = 0o ALM o B.

10/56

Algebraic Attacks against SE-SPECK

® The key is embedded in the affine layer AL" = Ao @®k" o Lo B.
® The self-equivalences A and B has the sparse matrices with 2n 4+ 11 variable entries.

® The key can be recovered by constructing a system of linear equations based on a few of
unknown variables.

11/56

Implicit Framework to ARX Ciphers

At CRYPTO 2022, Ranea et al. proposed an implicit framework to ARX Ciphers.

® Representing each round function by a low-degree implicit function (efficient
implementation).

® Encoding the implicit function with large affine permutations and even large non-linear
self-equivalences.

e Combining the large self-eqivalences with large affine encodings (hide the sparse matrix).

12/56

Implicit Framework to ARX Ciphers

Definition

(Implicit function). Let F be an n-bit function. A (2n, m)-bit function P is called an implicit
function of F if it satisfies P(x,y) =0 < y = F(x).

® |/, 0 < round encodings, T « implicit function of S, U < (B~%, A) such that
S=BoSoA, V + arandom linear transformation.

fix z
—

-
solve for y

® |mplicit round function = linear system:
P(x,y)=VoTo((Ao@kol(x),B ol 00 }y)))=0
s VoB ol o0 (y)=VoSoAodkol(x)

13/56

Implicit Framework to ARX Ciphers

® let E = LoSodk, without the representation of an implicit function:
E(0) = cli+1) o () 5 A() 5 gli—1) o ((_‘(i))—l,

where
ED — B() o E() 5 A).
® The canceling rule of the implicit self-equivalence implementation:

> quadratic-affine self-equivalence of E() <

— (€)1 (Bl | —| A0 |— g foiaz))1 B |l A+1) | | gpli+1) | | (i+2) |

B B+
cancel out

14/56

Algebraic Attacks against Implicit Framework

The key is embedded in the implicit round function:

E0) = ¢t o (BM)1 6 EIEI') o BU=1 o ()1,

The quadratic self-equivalences B is extremely sparse with a few monomials, up to affine
equivalence.

The key recovery on the structure ASA with modular addition S.

® Time complexity O(n?)/O(n®) with/without external encodings [BLU23].

15/56

2. Computation Analysis against White-Box SPECK

16 /56

Differential Computation Analysis

At CHES 2016, differential computation analysis (DCA) was proposed to perform a statistical
analysis on the computation traces of white-box implementations.

® Noise-Free Computation Traces

The first/last-round computed values NMWJ(J' ‘” H i »; H H ‘
(accessed memory/register) by using DBI : ’ | h ' " “ })
tOOIS.]) £ £ %

o Differential Power Analysis laimext ainte
Dividing the traces in two distinct sets - | i
< (_ K* correct key guess

based on key guesses, computing the i
difference of two sets, distinguishing the 1,7,‘;1,5{1971}71,&117{7:‘
correct key with the highest peak. / ___

17/56

Differences between Algebraic Attack and DCA

Difference Algebraic Attack DCA

Context white-box gray-box

1) unpacks the obfuscation layers
Process 2) pinpoints the target function
3) decodes the encoded structure

1) collects the computation traces
2) analyzes the traces

Reverse Engineering required not required

algebraic attack
Time Complexity + reverse engineering computation analysis
(extra skills and time)

18/56

Computation Analysis (CA)

® Following DCA, many other computation analyses are proposed.
® [= No L « the internal encoding, ¢ < a sensitive function.

Distinguisher Attack Method Analysis of Tlme.
Context Key Leakage Complexity

DCA [BHMT16] - 222
IDCA [BBB+19] correlation HW=1of L 227

CPA [RW19] . L 222

CA [RW19] computation non.-|nJe-ct|on of ¢ 579

MIA [RWI9] gray-box bijection of F 72

SA [SMG16] spectral - 227

MSA [LJK20] analysis imbalance of L 222

ISA [CGM21] | white-box non-invertibility of L 232
ADCA [TGLZ23] | gray-box | Cctection of dag(F) < 6 02132 ., 924.07

algebraic degree

I

/56

Algebraic Degree Computation Analysis

At CHES 2023, Tang et al. proposed the algebraic degree computation analysis (ADCA).
® |t can distinguish the correct key by computing the algebraic degrees of target functions.
® ADCA can break the most cases of encodings with the lowest time complexity.

X
8
® k* < secret key, 5{71
. o * chosen inputs
Target function Oy« = F o S o ®k*. forakey suess k| | %
X
[]

k < key guess,

r i

Chosen input x’ = @k o S71(x).

=N
O () s 18
o |f k = k*, Ax» = F which is the internal encoding. F
o If k#k* Ar=FoSo®k*odkoS ! which a 18
random function. Ay (x) Ap=(x)
ifk # k' ifk = k*

20/56

Analysis of DCA against ARX Structure

® Targeting the first-round key addition. ® Targeting the second-round modular
addition.
target value y
target value y
Kk
PR k@ k@
1) L@
Xy P> a Pxp . N
o e . x> o} é B> o} é %
=" BB x 5—@ F—D— "
Round-1 tra(l:ev Round-1 Round-2 "aiev

21/56

Simplified Target Functions

® The second-round modular addition.
® The first-round key addition.

y= ((((XS” > a) Bﬂxl(l)) ® k) s> a) /B
y = ((x(()l) S>> a) Bﬂx{l)> @ k ((Xl «f)a <(Xél) > a) Bﬂx{”) . k)

=y=xHa)®dk
= Si(x) @ k =y=(xHa)®k)B(® (xHca)® k)

=5(S51(x) D k,S1(x) D kD)

e Key addition after substitution.
® Substitution after key addition.

22/56

DCA on SPECK

® Result: For both two target functions, DCA obtains the highest correlation 1 for every key
guess and fails to distinguish the correct key.

® Reason:
® The modular addition lacks confusion to fully obfuscate the key information.
® The sensitive values of different key candidates are similar to each other.
® At least one bit of the sensitive values for an incorrect key guess is equal to one bit of the
sensitive values corresponding to the correct key.

23/56

Sum-Correlation DCA

® Principal:
® Each bit of the sensitive values for the correct key has correlation 1.
® The correct key has the maximum summed correlations.

® For each key guess, SC-DCA computes the correlation between each bit of the sensitive
value (¢k(x))i and each sample in the traces v;.
® |t sums the maximum computed correlations of every bit in the sensitive value.

e SC-DCA distinguisher:

5,§C_DCA = arg max Z maxi<j<¢ [Cor((¢k(x))i, vj)|
1<i<n

24/56

SC-DCA on (White-Box) SPECK

e SC-DCA on SPECK32:

® can successfully distinguish the correct key with the maximum summed correlation 16.
® Time complexity 238 with 4096 traces.

o SC-DCA on white-box SPECK32:

® extracts an incorrect key for both SE-SPECK32 and IF-SPECK32.
® does not consider the encoding phases which obfuscate the sensitive values against DCA.

25 /56

Encoded Structure of SE-SPECK

The first three encryption rounds of SE-SPECK without external encodings:

k(Z)AL(Z)

:‘ %)

B®@)

i « g6 x®
Round-1 Round-2 T rames

26 /56

Encoded Structure of IF-SPECK

® Without external encoding, the first encoded round function is defined as
EMD =c® oMol = c@ o (BOY1o EW),

® The encoded structure of the first two rounds:

k@D ALY 5
R - L S 11 o
3 ‘ ; (B(l))‘1 c@
f— o 3
xfl) << BI-ED = ; e "i)
Round-1 Round-2

If B is affine, E(1) is encoded by affine encoding.

e If B is quadratic, E(1) is encoded by non-linear encoding with unknown (low) degree.

27 /56

A Same Structure of SE-SPECK and IF-SEPCK

® By analyzing the round functions of SE-SPECK and IF-SPECK without external
encodings, we can obtain a function F which has the same structure as the first two

rounds in both two white-box implementations.

k@

x(V > a ! > al> Yo

xfl) KL B 1

28 /56

An Encoded Structure of SE-SPECK and IF-SEPCK

® Combining the first three rounds of SE-SPECK and the first two rounds of IF-SPECK:

k@ Round-1,2,3
S PSS r*\ —
1) ! |
for Yo ~HH NV > xg”
SE-SPECK F A® T B A®
*® : 1 (4)
1 — V1 : ; K B T X1
Round-1,2
xél)——v — Yo . xg3)
IF-SPECK F BEN7 |c@
[¢)]
X1 — 1 Xia)
self-equivalence ﬂ ﬂ affine/quadratic encoding
(1)
Xp —» Yo H So
equivalent structure F EC
[¢)]
X1 Y1 S1

29/56

An Encoded Structure of SE-SPECK and IF-SEPCK

® The target function of SE-SPECK and IF-SEPCK:

k* F
xo —+[> al-H é > afi> yo —f So
Xy — & B s Y1 S1

® The collected computation traces consist of (sp, s1).
® The sensitive values (tp, t;) are protected by a linear/non-linear encoding EC.

® |ts construction is irrelevant to the implicit function and the input encoding.

30/56

CA on SE-SPECK and IF-SPECK

e With a key guess k and an input x, CA encoding € o B~ with unknown degree
computes a sensitive vector 3
(21,22, , 22n). (21,22, Zan) Vi
k 0 *
e CA intends to computes the correlation A\ s B
between z; and y;. O
X F EC y
® Because of encoding EC, CA needs to
enumerate the combination of -
(21,22, , 22n). 2n bits 1 bit

31/56

Challenges of CA against White-Box ARX

® | arge spaces of inputs and key candidates: CA needs to compute the outputs of the
modular addition based on the inputs and key guesses.

® |arge encoding: CA needs to enumerate the linear combination of the sensitive values to
recover the affine encoding. Moreover, it is hard to defeat the quadratic encoding.

32/56

3. Chosen-Plaintext Computation Analysis

33/56

An Overview of CP-CA

A Chosen-Plaintext Computation Analysis (CP-CA) attack consists of the following three
phases:

® Adaptive chosen plaintexts: constructs an adaptive function with a key guess to compute
the plaintexts with chosen inputs (principal: a small subset of the full space).

® Correlation computation: invokes the algorithm with the obtained plaintexts and applies
the existing computation analysis methods, such as DCA and ADCA to analyze the
computation traces.

® |terative attack: repeats for other key candidates. Distinguishing the correct key based on
the ranking method of the corresponding computation analysis.

34/56

Adaptive Function

chosen inputs

adaptive function

plaintexts

An adaptive function:

® s applied to choose the plaintexts of the
cryptographic algorithm.

® is constructed by some reverse steps of
the cryptographic algorithm.

intermediate values

computation analysis

CP-CA

cryptographic algorithm

® needs to be instantiated by a key guess.

35/56

Adaptive Function

® The adaptive function G calculates the plaintexts (xo, x1) by the inverse of (tp, t1).

)

zZ

—-{ > al-H

T

k* :
S—-Ea-F-—] s
&KL B

d o s

}

chosen inputs

adaptive function Gy, plaintexts

encoded function Fy« traces

® |f key guess k equals to the correct key k*, (to, t1) = (20, z1)-

® Otherwise, (to, t1) are almost random values.

36/56

(In)Correct Key Guess

If key guess is correct:

® The collected values (sp, s1) are equal to
the outputs of an affine/non-linear equality
function EC(zg, z1).

e If EC is affine, (sp, s1) are linear (e

. . ' Z : X0 — S
combinations of (z, z1). } 70 G 0 F 0

' i k* k*
e |f EC is non-linear, (sp,s1) can be L x .
represented by a degree-d ANF of (zp, z1). L !

If key guess is incorrect:

® (sp,s1) are correlated to random (tp, t1).

37/56

Affine Self-Equivalence

Let z € {0,1}" denote an n,-bit vector, ¢ be an n-bit constant, and Cy represent an

(np (= n — na))-bit zero vector. Given an 2n-bit affine function AE : F3" +— F3", the resulting
vector AE(Cy || z, ¢) can also be computed as L' - z & I, where L' is a 2n x n, matrix and

I € {0,1}2".

e If EC is affine, (sp,s1) are linear combinations of z.
® For SPECK32,

(20,21) = (00000000000000 || z, 00f£00f£00££OOf f)

® (sp,51) = EC - (z9,21) = AE - (2) for some unknown affine function AE.

38/56

Quadratic Self-Equivalence

e If EC is quadratic, (sp,s1) are still linear combinations of z.

® Because of these fixed input bits, some variables in the monomials of the ANF
representations of EC are constants with degree 0.

® For an instance of the degree-2 quadratic encoding case, the probability p that a
monomial in the ANF has degree 2 is

_(n, / 2n\ ny(ns,—1)
S \2 2) 2n(2n—1)
Block size 32 43 64 96 128
p 5.65% | 2.48% | 1.39% | 0.61% | 0.34%

39/56

4. Attack Instances of CP-DCA and CP-ADCA

40 /56

CP-DCA

® CP-DCA calculates the correlation between a subset of linear combinations of the chosen
inputs and the samples of traces.

® The key guess with the maximum number of the highest correlation is the most likely
correct.

Let y; (1 < i < 2n) denote the output coordinate of AE(Cy || z, c). There exist 2n linear
combinations L of z satisfying |Cor(L - z, y;)| = 1.

41/56

CP-DCA Distinguisher

® The CP-DCA distinguisher 62P_DCA is defined as follows.

SPh — arg max # {max)Cor (L 20 (v(i))J'> ‘}

linear combinations

z €{0,1}" ‘v{ L

i}
n,=n-—n, + ng
Z zi=c¢ {0,1}
n f n
k Gy . .

" correlation computation

n n
v v

Xo X1

"""" 7% S ST

v

42 /56

Time Complexity of CP-DCA

Traces collection: O(|K| - N) with || < key space, N < input space.

Correlation computation: O(|K]|-2" -t - N) with 2" linear combinations, t < the
number of trace samples.

® Searching for the highest correlation: O(|K] - 2").

Overall time complexity: O(|[C| - 2" -t - N).

43/56

CP-ADCA

® The degree-1 CP-ADCA constructs a linear system that consists of the coordinates of
x € X and each sample of v.

® The key guess with the maximum number of solvable linear systems is the most likely
correct one.

Let y; (1 < i < 2n) denote the output coordinate of AE(Cy || z,¢c). Let Z; (1 <j < n,)
denote the bits of z. There exist 2n vectors a = (ag, a1, - - - , ap,) satisfying

12 - Zy)-a" =y, for 1 <i<2n.

44 /56

CP-ADCA Distinguisher

® The CP-ADCA distinguisher & *"°* is defined as follows.

SSPADCA — arg max # {r(Z) > r(Z | v;)}

N inout solvable?

inputs

i (1 1) (1)

e e —Zazu] o [0 A0 A) [

1
1 ZiZ) Zgz) Zr(i) la | 1L71{(2)
1 ZiN) Zglv) Zf[’;’) ap, Vi(N)
N traces

linear system

v; ={0,1},i € [t]

each sample

—— v={01)

45 /56

Time Complexity of ADCA

Traces collection: O(|K| - N) with || < key space, N < input space.

¢ Computation of linear systems: O(|K|-t- N - (n, + 1)) with the steps for calculating
r(Z | vi) are N-(ny+ 1), t < the number of trace samples.

® Searching for the maximum number of solvable linear systems: O(|K]).

Overall time complexity: O(|| -t - N - (ny+ 1)).

46 /56

Parameters of CP-DCA and CP-ADCA

® CP-CA can be instantiated with different parameters, such as the chosen input space n,,
the constant input ¢, the number of traces N, the number of trace samples t.

. Time complexity
Block size | np | na c N t
CP-DCA | CP-ADCA | DCA AC

32 8 00ff 32 237 231.32 269 230N 245
48 16 ffOOff 48 245.58 239.90 2101458 233N 250
64 24 | 8 00££00f f 256 | 64 2> 21832 213 | 2%~ 0%
96 40 00ffO0ffO0ff 96 27058 264,90 219&58 239 ~ 259
128 56 00££00££00££00f £ 128 2% 2832 203 2%~ 0%

47 /56

Simulations

® Performing the simulations of CP-DCA and CP-ADCA against the 32-bit encoded
structure with affine output encodings.

o CP-DCA and CP-ADCA can successfully recover the secret key for the 32-bit block size.

Block Key guess Count of recovered
Attack
size Range Count | Key Encoding
CP-DCA
32 | 0000 — £fff | 216 1 32
CP-ADCA

48 /56

SE-SPECK and IF-SPECK implementations

® Implement SE-SPECK and IF-SPECK with block sizes 32 and 48 thorough the
open-source scripts.

® Intel Core i7-11800H processor @2.30GHz and 40GB RAM.

)) Source Code | Binary size | RAM | Execution
Cipher Encoding | Degree })
size (MB) (MB) (MB) | time (ms)
SE32/K64 | affine - 0.08 0.04 1.11 0.06
SE48/K96 | affine - 0.18 0.07 1.17 0.14
affine 2 0.16 0.15 3.08 2.43
2 0.16 0.15 3.15 2.46
IF32/K64 _
quadratic 3 1.85 1.82 5.30 11.63
4 17.45 17.41 24.43 83.33

49 /56

Practical attacks of CP-DCA and CP-ADCA

e CP-DCA and CP-ADCA can successfully distinguish the secret key over the full key space.

CP-DCA | CP-ADCA
Cipher Encoding | Degree Count of recovered

Key | Encoding | Key | Encoding

SE32/K64 affine - 18 19
SE48/K96 | affine - 25 36
affine 2
5 1 1
IF32/K64 i 32 32
quadratic 3
4

50 /56

Compare with Chosen-Plaintext SCA

CP-CA:

® constructs an adaptive function —
computes the target plaintexts.

Adaptive Side-Channel Analysis (ASCA):

® analyzes the side-channel information —
choose the target plaintexts.

chosen inputs

adaptive function
plaintexts

intermediate values
computation analysis

CP-CA

adaptive chosen -

analysis of . 5
intermediate values cryptographic algorithm

SCA attack

ASCA

cryptographic algorithm

51/56

Possible Countermeasure of CP-CA

® The quadratic non-linear encoding can be bypassed by the adaptive function of the
first-degree CP-CA.

® The possible countermeasure is to apply higher-degree non-linear encoding.

The open problems:
® The method to generate the higher-degree self-equivalences of modular addition?

® The resistance of higher-degree non-linear encoding against higher-degree CP-CA?

52 /56

Possible Improvement of CP-CA

® The most optimal choice for the parameters of ACP-DCA.

® The vector space of linear combinations,
® the number of required traces,
® and the constant inputs.

® Small key space. It costs a higher time complexity in the large block size cases.

® A specific analysis dedicated to the sparse affine self-equivalences.

53/56

5. Conclusion

54 /56

Conclusion

® The large spaces of inputs, key candidates, and encodings of ARX-based white-box
ciphers can prevent a practical DCA attack.

® CP-CA attacks exploit the chosen plaintexts phase to reduce the large affine encoding
into small linear one.

® The adaptive function can bypass the quadratic self-equivalence of IF-SPECK.

o SE-SPECK and IF-SPECK are vulnerable to CP-CA attacks.

55 /56

Thanks for your attention!

56 /56

	ARX-Based White-Box Ciphers
	Computation Analysis against White-Box SPECK
	Chosen-Plaintext Computation Analysis
	Attack Instances of CP-DCA and CP-ADCA
	Conclusion

