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Differential cryptanalysis

* Cryptanalysis technique introduced by Biham and Shamir in 1990.

* Based on the existence of a high-probability differential (6,06 ,./).
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* If the probability of (§;,,80us) is (much) higher than 27", where n is the block size,

then we have a differential distinguisher.
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Key recovery attack

A differential distinguisher can be used to mount a key recovery attack.

* This technique broke many of the cryptosystems of the 70s-80s, e.g. DES, FEAL,
Snefru, Khafre, REDOC-II, LOKI, etc.

* New primitives should come with arguments of resistance by design against this
technique.

* Most of the arguments used rely on showing that differential distinguishers of high
probability do not exist after a certain number of rounds.

* Not always enough: A deep understanding of how the key recovery works is necessary
to claim resistance against these attacks.
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The case of the SPEEDY block cipher

The SPEEDY family of block ciphers was designed by Leander, Moos, Moradi and
Rasoolzadeh and published at CHES 2021.

Target: ultra-low latency. Main variant: SPEEDY-7-192

The designers of SPEEDY presented security arguments on the resistance of the cipher to
differential attacks:

* The probability of any differential characteristic over 6 rounds is <2792,
* Not possible to add more than one key recovery round to any differential
distinguisher.
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The case of the SPEEDY block cipher

The SPEEDY family of block ciphers was designed by Leander, Moos, Moradi and
Rasoolzadeh and published at CHES 2021.

Target: ultra-low latency. Main variant: SPEEDY-7-192

The designers of SPEEDY presented security arguments on the resistance of the cipher to
differential attacks:

* The probability of any differential characteristic over 6 rounds is <2792,
* Not possible to add more than one key recovery round to any differential
distinguisher. False

Joint work with N. David, R. Heim and M. Naya-Plasencia (EUROCRYPT 2023)

Break of full-round SPEEDY-7-192 with a differential attack.
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Overview of the key recovery procedure
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First step: Construct 2P*%n plaintext pairs (with d;, =1log,(Din)).
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Overview of the key recovery procedure
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First step: Construct 2P*%n plaintext pairs (with d;, =1log,(Din)).

______ 2% structures ———-——»

e Use 25 plaintext structures of size 2%n
= 22din=1 pajrs from a structure.

o As 25t2din=1 — pP+din — g= p—(;, +1 structures.

Data complexity: 2P*!, Memory complexity: 2%»
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Not all pairs are useful
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Idea: Discard pairs that will not follow the differential.

* Keep only those plaintext pairs for which the difference of the corresponding output

pairs belongs to Dyy;.
* Order the list of structures with respect to the values of the non-active bits in the

ciphertext.

order by ciphertext value

~

active

Plaintext

structure

Encryption oracle

Ciphertext

active

non-active

Number of pairs for the attack

N = 2p+din_ (n—dous) .
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Goal of the key recovery

Determine the pairs for which there exists an associated key that leads to the differential.

A candidate is a triplet (P, P, k), i.e. a pair (P,P) and a (partial) key k that
encrypts/decrypts the pair to the differential.

What is the complexity of this procedure?

e Upper bound: min(2¥, N - 2/KinUKouly,

where « is the bit-size of the secret key.

* Lower bound: N+ N - 2KinWKoul=din=dou

where N - 2/KinUKoul=din=dout js the number of expected candidates.
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Efficient key recovery

A key recovery is efficient, if its complexity is as close as possible to the lower bound.

Solving an active S-box S in the key recovery rounds

For a given pair, determine whether this pair can respect the differential constraints, and,
if yes, under which conditions on the key.

A solution to S is any tuple (x,x’,S(x), S(x)) such that
x+x' =v;, and S(x) + S(X) = Vour.

Vout

Objective: Reduce the earliest possible the number of pairs while maximizing the number
of fixed key bits in K, U Kpy;.
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Why is this difficult?
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Potentially too many active S-boxes and key guesses.
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An algorithm for efficient key recovery
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Automating the key recovery

Research goal

Propose an efficient algorithm together with an automated tool for this procedure.

* Hard to treat this problem for all kind of block cipher designs.

* A first target: SPN ciphers with a bit-permutation layer and an (almost) linear key
schedule.

Joint work with David, Derbez, Heim and Naya-Plasencia (under submission).
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Modeling the key recovery as a graph
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Modeling the key recovery as a graph
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Algorithm - high level description

First step: Add the key recovery rounds, detect the active S-boxes and build the graph.

Strategy #x for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take
under the differential constraints imposed by the distinguisher.

Parameters of a strategy #x:
* number of solutions

* online time complexity

A strategy can be further refined with extra information: e.g. memory, offline time.
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Compare two strategies

Objective: Build an efficient strategy for the whole graph.

* Based on basic strategies, i.e. strategies for a single S-box.

Output of the tool
An efficient order to combine all basic subgraphs, aiming to minimize the complexity of
the resulting strategy.

Compare two strategies #; and %2 for the same subgraph X

1. Choose the one with the best time complexity.
2. If same time complexity, choose the one with the best memory complexity.
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Merging two strategies

Let #x and Fy two strategies for the graphs X and Y respectively.

* The number of solutions of #(XuY) only depends on XU Y:

Number of solutions of Fxuy
Sol(XU Y) = Sol(X) + Sol(Y) — # bit-relations between the nodes of X and Y

Time and memory associated to Fxuy

* T(Fxuy) =max(T(Fx), T(Fy), Sol(Fxuy))
* M(Fxuy) = max(M(Fx), M(Fy), min(Sol(F%), Sol(Hy)))
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A dynamic programming approach

* The online time complexity of #xyuy only depends on the time complexities of Fx
and #.

* An optimal strategy for XUY can always be obtained by merging two optimal
strategies for X and Y.

* Use a bottom-up approach, merging first the strategies with the smallest time
complexity to reach a graph strategy with a minimal time complexity.

Dynamic programming approach

Ensure that, for any subgraph X, we only keep one optimal strategy to enumerate it.
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Pre-sieving

Idea behind the pre-sieving

Reduce the number of pairs as quickly as possible to only keep the N’ < N pairs that
satisfy the differential constraints.

How: Use the differential constraints of the S-boxes of the external rounds.

Advantage

The key recovery is performed on less pairs.
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Pre-sieving in practice

Offline step: Per active S-box, build a sieving list
L with the solutions to the S-box:

* Bits without key addition: store the pair.
* Bits with key addition: store the difference.

Online step: For each pair and each S-box, check
whether the pair is consistent with the sieving list.

: L . } )
Filter: |2—s| where s is the size of the tuples in L.

1ot

L S0 |

s

! ! ! !
(x3,X3,X2,X5, X1 ®Xy,X0 ®Xg)

. 36 (g
Filter: — =27083,
26

After this step: N/ =25 N.
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Precomputing partial solutions

Precompute the partial solutions to some subgraph.

* Impact on the memory complexity and the offline time of the attack.

* The optimal key recovery strategy depends on how much memory and offline time are
allowed.
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Applications
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Application to the toy cipher

‘ssqu
sol: 6.68

sol: N + 0.68
time: N + 0.68

memory: 15.31
precomputation: 15.31

-> SB6[0] > SB7[1] SB8[2] SB8[3]
sol: 17.51
sol: N + 1.02 SB0[0] SBO[2] SB1[0]
time: N +1.51 sol: 12.31
SBO[1] SBO[3] SB1[2] SB2[0]
sol: 15.31
sol: N +1.63
time: N + 1.63
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Application to RECTANGLE

RECTANGLE is a block cipher designed by Zhang, Bao, Lin, Rijmen, Yang and Verbauwhede
in 2015.

* The designers proposed a differential attack on 18 rounds of RECTANGLE-80 and
RECTANGLE-128.

* Broll et al. (ASIACRYPT 2021) improved the time complexity of this attack with
advanced techniques.
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Attack on RECTANGLE
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14-round distinguisher
Ahg ... [ 1.
AO1g «vvv vvvn v xk11 L LoRkRR L
1AV A S 2 T RN N N I A N
AO17 ... ®%xk kkkk kxklkx L, Lokokkok okkokk L, Lokokkok okkokk L,

R=2+2+14 dj =24, dpy; =28 N=2%08
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Attack on RECTANGLE
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14-round distinguisher
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23/26



Attack on RECTANGLE
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din =24, doyr = 56

N = 27883

Ckr=2% v
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Attack on RECTANGLE
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Application to other ciphers

Start from an existing distinguisher that led to the best key recovery attack against the
target cipher.

* PRESENT-80: Extended by two rounds the previous best differential attack.

* GIFT-64 and SPEEDY-7-192: Best key recovery strategy without additional
techniques.
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Extensions and improvements

* Handle ciphers with more complex linear layers.
* Handle ciphers with non-linear key schedules.

* Incorporate tree-based key recovery techniques by exploiting the structure of the
involved S-boxes.

The best distinguisher does not always lead to the best key recovery!

Ultimate goal

Combine the tool with a distinguisher-search algorithm to find the best possible attacks.
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Other open problems

* Prove optimality.

* Apply a similar approach to other attacks.
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Other open problems

* Prove optimality.

* Apply a similar approach to other attacks.

Thanks for your attention!
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