

Automating the key recovery in differential attacks

Christina Boura

University of Versailles, France

(based on joint-work with Nicolas David, Patrick Derbez, Rachelle Heim and María Naya-Plasencia)

ASK 2023

December 2, 2023

Differential cryptanalysis

- Cryptanalysis technique introduced by Biham and Shamir in 1990.
- Based on the existence of a high-probability **differential** (δ_{in} , δ_{out}).

• If the probability of $(\delta_{in}, \delta_{out})$ is (much) higher than 2^{-n} , where n is the block size, then we have a differential distinguisher.

Key recovery attack

A differential distinguisher can be used to mount a key recovery attack.

- This technique broke many of the cryptosystems of the 70s-80s, e.g. DES, FEAL, Snefru, Khafre, REDOC-II, LOKI, etc.
- New primitives should come with arguments of resistance by design against this technique.
- Most of the arguments used rely on showing that differential distinguishers of high probability do not exist after a certain number of rounds.
- Not always enough: A deep understanding of how the key recovery works is necessary to claim resistance against these attacks.

The case of the SPEEDY block cipher

The SPEEDY family of block ciphers was designed by Leander, Moos, Moradi and Rasoolzadeh and published at CHES 2021.

Target: ultra-low latency. Main variant: SPEEDY-7-192

The designers of SPEEDY presented security arguments on the resistance of the cipher to differential attacks:

- The probability of any differential characteristic over **6 rounds** is $\leq 2^{-192}$.
- Not possible to add more than one key recovery round to any differential distinguisher.

The case of the SPEEDY block cipher

The SPEEDY family of block ciphers was designed by Leander, Moos, Moradi and Rasoolzadeh and published at CHES 2021.

Target: ultra-low latency. Main variant: SPEEDY-7-192

The designers of SPEEDY presented security arguments on the resistance of the cipher to differential attacks:

- The probability of any differential characteristic over **6 rounds** is $\leq 2^{-192}$.
- Not possible to add more than one key recovery round to any differential distinguisher. False

Joint work with N. David, R. Heim and M. Naya-Plasencia (EUROCRYPT 2023)

Break of full-round SPEEDY-7-192 with a differential attack.

Overview of the key recovery procedure

First step: Construct $2^{p+d_{in}}$ plaintext pairs (with $d_{in} = \log_2(D_{in})$).

Overview of the key recovery procedure

First step: Construct $2^{p+d_{in}}$ plaintext pairs (with $d_{in} = \log_2(D_{in})$).

• Use 2^s plaintext structures of size $2^{d_{in}}$ $\Rightarrow 2^{2d_{in}-1}$ pairs from a structure.

• As $2^{s+2d_{in}-1} = 2^{p+d_{in}} \implies s = p - d_{in} + 1$ structures.

Data complexity: 2^{p+1} , Memory complexity: $2^{d_{in}}$

Not all pairs are useful

Idea: Discard pairs that will not follow the differential.

- Keep only those plaintext pairs for which the difference of the corresponding output pairs belongs to D_{out} .
- Order the list of structures with respect to the values of the non-active bits in the ciphertext.

Number of pairs for the attack

$$N = 2^{p+d_{in}-(n-d_{out})}$$
.

Goal of the key recovery

Goal

Determine the pairs for which there exists an associated key that leads to the differential.

A candidate is a triplet (P, P', k), i.e. a pair (P, P') and a (partial) key k that encrypts/decrypts the pair to the differential.

What is the complexity of this procedure?

- Upper bound: $\min(2^{\kappa}, N \cdot 2^{|K_{in} \cup K_{out}|})$, where κ is the bit-size of the secret key.
- Lower bound: $N + N \cdot 2^{|K_{in} \cup K_{out}| d_{in} d_{out}}$, where $N \cdot 2^{|K_{in} \cup K_{out}| d_{in} d_{out}}$ is the number of expected candidates.

Efficient key recovery

A key recovery is efficient, if its complexity is as close as possible to the lower bound.

Solving an active S-box S in the key recovery rounds

For a given pair, determine whether this pair can respect the differential constraints, and, if yes, under which conditions on the key.

A solution to
$$S$$
 is any tuple $(x, x', S(x), S(x'))$ such that $x + x' = v_{in}$ and $S(x) + S(x') = v_{out}$.

Objective: Reduce the earliest possible the number of pairs while maximizing the number of fixed key bits in $K_{in} \cup K_{out}$.

Why is this difficult?

Potentially too many active S-boxes and key guesses.

An algorithm for efficient key recovery

Automating the key recovery

Research goal

Propose an efficient algorithm together with an automated tool for this procedure.

- Hard to treat this problem for all kind of block cipher designs.
- A first target: SPN ciphers with a bit-permutation layer and an (almost) linear key schedule.

Joint work with David, Derbez, Heim and Naya-Plasencia (under submission).

Modeling the key recovery as a graph

Modeling the key recovery as a graph

Order is important!

Algorithm - high level description

First step: Add the key recovery rounds, detect the active S-boxes and build the graph.

Strategy \mathscr{S}_X for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take under the differential constraints imposed by the distinguisher.

Parameters of a strategy \mathcal{S}_X :

- number of solutions
- online time complexity

A strategy can be further refined with extra information: e.g. memory, offline time.

Compare two strategies

Objective: Build an efficient strategy for the whole graph.

• Based on basic strategies, i.e. strategies for a single S-box.

Output of the tool

An efficient order to combine all basic subgraphs, aiming to minimize the complexity of the resulting strategy.

Compare two strategies \mathscr{S}_X^1 and \mathscr{S}_X^2 for the same subgraph X

- 1. Choose the one with the best time complexity.
- 2. If same time complexity, choose the one with the best memory complexity.

Merging two strategies

Let \mathcal{S}_X and \mathcal{S}_Y two strategies for the graphs X and Y respectively.

• The number of solutions of $\mathcal{S}(X \cup Y)$ only depends on $X \cup Y$:

Number of solutions of $\mathcal{S}_{X \cup Y}$

 $Sol(X \cup Y) = Sol(X) + Sol(Y) - \#$ bit-relations between the nodes of X and Y

Time and memory associated to $\mathscr{S}_{X \cup Y}$

- $T(\mathscr{S}_{X \cup Y}) \approx \max(T(\mathscr{S}_X), T(\mathscr{S}_Y), Sol(\mathscr{S}_{X \cup Y}))$
- $M(\mathcal{S}_{X \cup Y}) \approx \max(M(\mathcal{S}_X), M(\mathcal{S}_Y), \min(Sol(\mathcal{S}_X), Sol(\mathcal{S}_Y)))$

A dynamic programming approach

- The online time complexity of $\mathscr{S}_{X \cup Y}$ only depends on the time complexities of \mathscr{S}_X and \mathscr{S}_Y .
- An optimal strategy for $X \cup Y$ can always be obtained by merging two optimal strategies for X and Y.
- Use a bottom-up approach, merging first the strategies with the smallest time complexity to reach a graph strategy with a minimal time complexity.

Dynamic programming approach

Ensure that, for any subgraph X, we only keep one optimal strategy to enumerate it.

Pre-sieving

Idea behind the pre-sieving

Reduce the number of pairs as quickly as possible to only keep the $N' \leq N$ pairs that satisfy the differential constraints.

How: Use the differential constraints of the S-boxes of the external rounds.

Advantage

The key recovery is performed on less pairs.

Pre-sieving in practice

Offline step: Per active S-box, build a sieving list *L* with the solutions to the S-box:

- Bits without key addition: store the pair.
- Bits with key addition: store the difference.

Online step: For each pair and each S-box, check whether the pair is consistent with the sieving list.

Filter: $\frac{|L|}{2^s}$, where s is the size of the tuples in L.

$$(x_3, x_3', x_2, x_2', x_1 \oplus x_1', x_0 \oplus x_0')$$

Filter:
$$\frac{36}{2^6} = 2^{-0.83}$$
.

After this step: $N' = 2^{-5.63}N$.

Precomputing partial solutions

Idea

Precompute the partial solutions to some subgraph.

- Impact on the memory complexity and the offline time of the attack.
- The optimal key recovery strategy depends on how much memory and offline time are allowed.

Applications

Application to the toy cipher

Application to RECTANGLE

RECTANGLE is a block cipher designed by Zhang, Bao, Lin, Rijmen, Yang and Verbauwhede in 2015.

- The designers proposed a differential attack on 18 rounds of RECTANGLE-80 and RECTANGLE-128.
- Broll et al. (ASIACRYPT 2021) improved the time complexity of this attack with advanced techniques.

ΔI_0	****	 	****	****	****			****	*11*	 	 		0000
ΔO_0	*	 	*	.1*.	*			*	1.	 	 		.0
ΔI_1		 	*0**					*11*		 	 		
ΔO_1		 	.11.					1.		 	 		
ΔI_2		 1.	• • • •		• • • •	• • • •	.11.		• • • •	 	 	• • • •	• • • •

14-round distinguisher

```
\Delta O_{16} .... **11 .... **** ....
```

$$R = 2 + 2 + 14$$

$$R = \frac{2}{2} + \frac{2}{1} + 14$$
 $d_{in} = 24$, $d_{out} = 28$

$$N = 2^{50.83}$$

$$C_{KR} = 2^{19}$$

14-round distinguisher

$$R = 3 + 2 + 14$$
 $d_{in} = 52$, $d_{out} = 28$ N

$$N = 2^{78.83}$$

$$C_{KR} = 2^{43}$$

ΔI_0	****			****	****	****			****	*11*			 		0000
ΔO_0	*			*	.1*.	*			*	1.			 		.0
ΔI_1				*0**					*11*				 		
ΔO_1				.11.					1.				 		
ΔI_2	• • • •	• • • •	1.					.11.					 • • • •		• • • •
	14-round distinguisher														
ΔI_{16}				.1									 	1.	
ΔO_{16}				**11									 	****	
$\Delta O_{16} \ \Delta I_{17}$		*	 .*1.	**11 1			*	.*					 *.	****	
ΔO_{16} ΔI_{17} ΔO_{17}		* ****	 .*1. ****	**11 1 **1*			* ****	 .* ***					 *. ***	**** * ***	
ΔO_{16} ΔI_{17} ΔO_{17} ΔI_{18}		* **** ****	 .*1. **** .*1*	**11 1 **1* *		*.**	* **** ****	 .* ****		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		 *. ****	**** * ****	

R = 2 + 3 + 14 $d_{in} = 24$, $d_{out} = 56$

 $N = 2^{78.83}$

 $C_{KR} = 2^{46}$

ΔI_0	****	****	****	****	****	****	****		****	****	*11*	0000	****	****	 ****
ΔO_0	**0*	***.	*	*	.***	*1**	*.*.		*	**	1.	.0		*	 .*.0
ΔI_1	****			****	****	****			****	*11*					 0000
ΔO_1	*			*	.1*.	*			*	1.					 .0
ΔI_2				*0**					*11*						
ΔO_2				.11.					1.						
ΔI_3			1.					.11.							

14-round distinguisher

$$R = \frac{3}{3} + \frac{3}{4} + 14$$
 $d_{in} = 52$, $d_{out} = 56$ $N = 2^{106.83}$

Application to other ciphers

Start from an existing distinguisher that led to the best key recovery attack against the target cipher.

- PRESENT-80: Extended by two rounds the previous best differential attack.
- GIFT-64 and SPEEDY-7-192: Best key recovery strategy without additional techniques.

Extensions and improvements

- Handle ciphers with more complex linear layers.
- Handle ciphers with non-linear key schedules.
- Incorporate tree-based key recovery techniques by exploiting the structure of the involved S-boxes.

The best distinguisher does not always lead to the best key recovery!

Ultimate goal

Combine the tool with a distinguisher-search algorithm to find the best possible attacks.

Other open problems

- Prove optimality.
- Apply a similar approach to other attacks.

Other open problems

- Prove optimality.
- Apply a similar approach to other attacks.

Thanks for your attention!