Coefficient Grouping: A New Algebraic Degree Evaluation Technique and Its Applications

Fukang Liu

Tokyo Institute of Technology, Tokyo, Japan
ASK 2023

Outline

1 Introduction

2 Degree Evaluation for Chaghri

3 Coefficient Grouping Technique

4 Application to Chaghri

5 Coefficient Grouping for Complex Affine Layers
6 Conclusion

Background

The talks are based on three papers:

- Coefficient Grouping: Breaking Chaghri and More
- Coefficient Grouping for Complex Affine layers
- An $\mathcal{O}(n)$ Algorithm for Coefficient Grouping

Special thanks to my collaborators:

- Ravi Anand (University of Hyogo, Japan)
- Libo Wang (University of Hyogo, Japan)
- Willi Meier (FHNW, Switzerland)
- Lorenzo Grassi (Ruhr University Bochum, Germany)
- Clémence Bouvier (Sorbonne University \& Inria, France)
- Takanori Isobe (University of Hyogo \& NICT, Japan)

The Chaghri Primitive

- Proposed at ACM CCS 2022

■ FHE-friendly block cipher
■ Outperforms AES (in FHE setting) by 65\%

- Over a large finite field $\mathbb{F}_{2^{63}}^{3}$

Description of Chaghri

- The round function:

$$
S(x)=x^{2^{32}+1}, \quad B(x)=c_{0} x^{2^{3}}+c_{1}
$$

■ State transitions:

$$
\left(z_{0,1}, z_{0,2}, z_{0,3}\right) \rightarrow\left(z_{1,1}, z_{1,2}, z_{1,3}\right) \rightarrow \cdots \rightarrow\left(z_{r, 1}, z_{r, 2}, z_{r, 3}\right)
$$

Higher-order Differential Attack over $\mathbb{F}_{2^{n}}$

Algebraic degree of a univariate polynomial $\mathcal{F}(X)$ in $\mathbb{F}_{2^{n}}[X]$

Let

$$
\mathcal{F}(X)=\sum_{i=0}^{2^{n}-1} u_{i} X^{i}
$$

Then, its algebraic degree $D_{\mathcal{F}}$ is defined as:

$$
D_{\mathcal{F}}=\max \left\{H(i): i \in\left[0,2^{n}-1\right], u_{i} \neq 0\right\}
$$

where $H(i)$ denotes the hamming weight of the integer i, i.e., the number of " 1 " in its binary representation.

Example

For $\mathcal{F}=X^{2^{30}+2^{31}}+X^{2^{1}+2^{3}+2^{4}}$, we have $D_{\mathcal{F}}=3$.

Degree Evaluation for Chaghri via Enumeration

Our very naive idea:

- Step 1: set the input as a univariate polynomial in X :

$$
\begin{aligned}
& z_{0,1}=A_{0,1} X+B_{0,1} \\
& z_{0,2}=A_{0,2} X+B_{0,2} \\
& z_{0,3}=A_{0,3} X+B_{0,3}
\end{aligned}
$$

- $z_{r, i}$ is always a univariate polynomial $P_{r, i}(X) \in \mathbb{F}_{2^{n}}[X]$.

■ Step 2: trace the evolution of $P_{r, i}$.
■ Step 3: compute all possible exponents in $P_{r, i}$. (practical???)
■ Step 4: find the exponent with the maximal hamming weight

Degree Evaluation for Chaghri via Enumeration

Step 2: trace the evolution of polynomials

■ New representation for $\left(z_{r, 1}, z_{r, 2}, z_{r, 3}\right)$

$$
z_{r, 1}=\sum_{i=1}^{\left|w_{r}\right|} A_{r, i} X^{w_{r, i}}, z_{r, 2}=\sum_{i=1}^{\left|w_{r}\right|} B_{r, i} X^{w_{r, i}}, z_{r, 3}=\sum_{i=1}^{\left|w_{r}\right|} C_{r, i} X^{w_{r, i}}
$$

- The set of all possible exponents after r rounds:

$$
w_{r}=\left\{w_{r, 1}, w_{r, 2}, \ldots, w_{r,\left|w_{r}\right|}\right\} \subseteq \mathbb{N}, \quad w_{0}=\{0,1\}
$$

- Goal: find a relation between w_{r} and w_{r+1} to compute w_{r} iteratively.

Degree Evaluation for Chaghri via Enumeration

Step 2: trace the evolution of polynomials

- Through $S(x)=x^{2^{32}+1}$:

$$
\begin{aligned}
S\left(z_{r, 1}\right) & =\left(\sum_{i=1}^{\left|w_{r}\right|} A_{r, i} X^{w_{r, i}}\right)^{2^{32}+2^{0}} \\
& =\left(\sum_{i=1}^{\left|w_{r}\right|} A_{r, i} X^{w_{r, i}}\right)^{2^{32}} \times\left(\sum_{i=1}^{\left|w_{r}\right|} A_{r, i} X^{w_{r, i}}\right)^{2^{0}} \\
& =\sum_{i=1}^{\left|w_{r}\right|} \sum_{j=1}^{\left|w_{r}\right|} A_{r, i, j} X^{2^{32} w_{r, i}+2^{0} w_{r, j}} .
\end{aligned}
$$

where $A_{r, i, j} \in \mathbb{F}_{2^{n}}$ are key-dependent coefficients.

Degree Evaluation for Chaghri via Enumeration

Step 2: trace the evolution of polynomials

- Through $B(x)=x^{2^{3}}$:

$$
\begin{aligned}
B \circ S\left(z_{r, 1}\right) & =c_{0}\left(\sum_{i=1}^{\left|w_{r}\right|} \sum_{j=1}^{\left|w_{r}\right|} A_{r, i, j} X^{\left(2^{32} w_{r, i}+2^{0} w_{r, j}\right)}\right)^{2^{3}}+c_{1} \\
& =\sum_{i=1}^{\left|w_{r}\right|} \sum_{j=1}^{\left|w_{r}\right|} A_{r, i, j}^{\prime} X^{2^{35} w_{r, i}+2^{3} w_{r, j} .}
\end{aligned}
$$

- The matrix M does not affect this representation:

$$
z_{r+1,1}=\sum_{i=1}^{\left|w_{r}\right|} \sum_{j=1}^{\left|w_{r}\right|} A_{r+1, i, j} X^{2^{35} w_{r, i}+2^{3} w_{r, j}}
$$

Degree Evaluation for Chaghri via Enumeration

Step 2: trace the evolution of polynomials

- The relation between w_{r} and w_{r+1} is obtained as

$$
w_{r+1}=\left\{\mathcal{M}_{63}(e)\left|e=2^{35} w_{r, i}+2^{3} w_{r, j}, 1 \leq i, j \leq\left|w_{r}\right|\right\}\right.
$$

where we define

$$
\mathcal{M}_{n}(x)=\left\{\begin{aligned}
2^{n}-1 & \text { if } 2^{n}-1 \mid x, x \geq 2^{n}-1 \\
x \%\left(2^{n}-1\right) & \text { otherwise }
\end{aligned}\right.
$$

due to

$$
\left\{\begin{aligned}
x^{2^{n}} & =x \forall x \in \mathbb{F}_{2^{n}}, \\
x^{2^{n}-1} & =1 \forall x \in \mathbb{F}_{2^{n}} \text { and } x \neq 0
\end{aligned}\right.
$$

- Why previous methods failed: they can not handle the modular addition!!!

Degree Evaluation for Chaghri via Enumeration

Step 2: trace the evolution of polynomials

- The relation between w_{r} and w_{r+2} is obtained as

$$
\begin{aligned}
w_{r+1} & =\left\{\mathcal{M}_{63}(e)\left|e=2^{35} w_{r, i}+2^{3} w_{r, j}, 1 \leq i, j \leq\left|w_{r}\right|\right\},\right. \\
w_{r+2} & =\left\{\mathcal{M}_{63}(e)\left|e=2^{35}\left(2^{35} w_{r, i}+2^{3} w_{r, j}\right)+2^{3}\left(2^{35} w_{r, s}+2^{3} w_{r, t}\right), 1 \leq i, j, s, t \leq\left|w_{r}\right|\right\},\right. \\
& =\left\{\mathcal{M}_{63}(e)\left|e=2^{38}\left(w_{r, i}+w_{r, s}\right)+2^{7} w_{r, i}+2^{6} w_{r, t}, 1 \leq i, j, s, t \leq\left|w_{r}\right|\right\},\right.
\end{aligned}
$$

■ Why we consider w_{r+2} : 2 rounds are treated as 1 round in Chaghri.

Throughout this slide, we have

$$
w_{r}=\left\{w_{r, 1}, w_{r, 2}, \ldots, w_{r,\left|w_{r}\right|}\right\}
$$

Degree Evaluation for Chaghri via Enumeration

Step 3: Compute w_{r}

- Initial set:

$$
w_{0}=\{0,1\} .
$$

- Compute w_{r+2} with

$$
\begin{aligned}
w_{r+2}= & \left\{\mathcal{M}_{63}(e) \mid e=2^{38}\left(w_{r, i}+w_{r, s}\right)+2^{7} w_{r, i}+2^{6} w_{r, t},\right. \\
& \left.1 \leq i, j, s, t \leq\left|w_{r}\right|\right\} .
\end{aligned}
$$

■ Naive enumeration quickly becomes impractical as $\left|w_{r}\right|$ is too large even for small r.

Coefficient Grouping Technique

Motivation

■ Do we really need to compute w_{r} round by round?

- Can we have a more elegant and general method that can work for any

$$
S(x)=x^{2^{k_{0}}+2^{k_{1}}}, B(x)=c_{1} x^{2^{k_{2}}}+c_{2}
$$

and a general finite field $\mathbb{F}_{2^{n}}$?

Coefficient Grouping Technique

Using $S(x)=x^{2^{k_{0}}+2^{k_{1}}} \in \mathbb{F}_{2^{n}}[x], \quad B(x)=c_{1} x^{2^{k_{2}}}+c_{2} \in \mathbb{F}_{2^{n}}[x]$

- Relation between w_{r} and w_{r+1} :

$$
w_{r+1}=\left\{\mathcal{M}_{n}(e)\left|e=2^{k_{0}+k_{2}} w_{r, i}+2^{k_{1}+k_{2}} w_{r, j}, 1 \leq i, j \leq\left|w_{r}\right|\right\}\right.
$$

- Relation between w_{r} and w_{r+2} :

$$
\begin{aligned}
& w_{r+2} \\
&=\quad\left\{\mathcal{M}_{n}(e) \mid e=2^{k_{0}+k_{2}}\left(2^{k_{0}+k_{2}} w_{r, i}+2^{k_{1}+k_{2}} w_{r, j}\right)+2^{k_{1}+k_{2}}\left(2^{k_{0}+k_{2}} w_{r, s}+2^{k_{1}+k_{2}} w_{r, t}\right),\right. \\
&\left.1 \leq i, j, s, t \leq\left|w_{r}\right|\right\} \\
&=\left\{\mathcal{M}_{n}(e) \mid e=2^{2 k_{0}+2 k_{2}} w_{r, i}+2^{k_{0}+k_{1}+2 k_{2}}\left(w_{r, j}+w_{r, s}\right)+2^{2 k_{1}+2 k_{2}} w_{r, t},\right. \\
&\left.1 \leq i, j, s, t \leq\left|w_{r}\right|\right\} .
\end{aligned}
$$

Coefficient Grouping Technique

Using $S(x)=x^{2^{k_{0}}+2^{k_{1}}} \in \mathbb{F}_{2^{n}}[x], \quad B(x)=c_{1} x^{2^{k_{2}}}+c_{2} \in \mathbb{F}_{2^{n}}[x]$
■ Three important properties for $\mathcal{M}_{n}(x)$, i.e. $\bmod 2^{n}-1$:

$$
\begin{aligned}
\mathcal{M}_{n}\left(2^{i}\right) & =2^{i \bmod n} \\
\mathcal{M}_{n}(x+y) & =\mathcal{M}_{n}(x)+\mathcal{M}_{n}(y) \\
\mathcal{M}_{n}(x \cdot y) & =\mathcal{M}_{n}\left(\mathcal{M}_{n}(x) \cdot \mathcal{M}_{n}(y)\right)
\end{aligned}
$$

Coefficient Grouping Technique

Using $S(x)=x^{2^{k_{0}}+2^{k_{1}}} \in \mathbb{F}_{2^{n}}[x], \quad B(x)=c_{1} x^{2^{k_{2}}}+c_{2} \in \mathbb{F}_{2^{n}}[x]$

- Relation between w_{r} and $w_{r+\ell}$:

$$
\begin{array}{r}
w_{r+\ell}=\left\{\mathcal{M}_{n}(e) \mid e=\sum_{i=1}^{N_{n-1}} 2^{n-1} w_{r, d_{i, n-1}}+\sum_{i=1}^{N_{n-2}} 2^{n-2} w_{r, d_{i, n-2}}+\ldots+\sum_{i=1}^{N_{0}} 2^{0} w_{r, d_{i, 0}},\right. \\
\text { where } \left.1 \leq d_{i, j} \leq\left|w_{r}\right| \text { for } 0 \leq j \leq n-1\right\} .
\end{array}
$$

- Group all possible N_{j} coefficients sharing the same factor 2^{j} :

$$
w_{r, d_{1, j}}, w_{r, d_{2, j}}, \ldots, w_{r, d_{N_{j}, j}} \in w_{r}\left(r=0, w_{0}=\{0,1\}\right)
$$

i.e., in the formula of $e, 2^{j} w_{r, d_{i, j}}$ is possible to appear

- $w_{r+\ell}$ is fully described by a vector $\left(N_{n-1}, \ldots, N_{0}\right)$ and w_{r}.

Coefficient Grouping Technique

New representation of w_{r}

- $r=0:$

$$
\begin{aligned}
w_{0} & =\{0,1\}=\left\{\mathcal{M}_{n}(e)\left|e=2^{0} w_{0, i}, 1 \leq i \leq 2=\left|w_{0}\right|\right\}\right. \\
& \rightarrow\left(N_{n-1}^{0}, \ldots, N_{1}^{0}\right)=(0, \ldots, 0), \quad N_{0}^{0}=1
\end{aligned}
$$

- Relation between w_{r} and w_{r+1} :

$$
w_{r+1}=\left\{\mathcal{M}_{n}(e)\left|e=2^{k_{0}+k_{2}} w_{r, i}+2^{k_{1}+k_{2}} w_{r, j}, 1 \leq i, j \leq\left|w_{r}\right|\right\}\right.
$$

\square Find $\left(N_{n-1}^{r}, \ldots, N_{0}^{r}\right)$ to represent w_{r} :

$$
N_{i}^{r+1}=N_{\left(i-\left(k_{1}+k_{2}\right)\right) \% n}^{r}+N_{\left(i-\left(k_{0}+k_{2}\right)\right) \% n}^{r} \text { for } 0 \leq i \leq n-1 .
$$

- $\left(N_{n-1}^{r}, \ldots, N_{0}^{r}\right)$ can be computed in time $O(n)$.

Coefficient Grouping Technique

Finding two representations of w_{r}

- Representation 1 of w_{r} :

$$
\begin{aligned}
w_{r}= & \left\{\mathcal{M}_{n}(e) \mid e=\sum_{i=1}^{N_{n-1}^{r}} 2^{n-1} w_{0, d_{i, n-1}}+\sum_{i=1}^{N_{n-2}^{r}} 2^{n-2} w_{0, d_{i, n-2}}+\cdots+\sum_{i=1}^{N_{0}^{r}} 2^{0} w_{0, d_{i, 0}},\right. \\
& \text { where } \left.1 \leq d_{i, j} \leq\left|w_{0}\right| \text { for } 0 \leq j \leq n-1 \text { and } w_{0}=\{0,1\}\right\} .
\end{aligned}
$$

- For each term 2^{j}, there are N_{j}^{r} possible coefficients

$$
w_{0, d_{1, j}}, w_{0, d_{2, j}}, \ldots, w_{0, d_{N_{j}, j}} \in w_{0}=\{0,1\}
$$

which implies $\sum_{i=1}^{N_{j}^{r}} 2^{j} w_{0, d_{i, j}} \in\left\{2^{j} \gamma_{j} \mid 0 \leq \gamma_{j} \leq N_{j}^{r}\right\}$.

Coefficient Grouping Technique

Finding $e \in w_{r}$ with $H(e)$ maximal

- Representation 2 of w_{r} :

$$
w_{r}=\left\{\mathcal{M}_{n}(e) \mid e=\sum_{i=0}^{n-1} 2^{i} \gamma_{i}, 0 \leq \gamma_{i} \leq N_{i}^{r}\right\} .
$$

- Problem reduction (optimization problem):

$$
\begin{array}{ll}
\text { maximize } & H\left(\mathcal{M}_{n}\left(\sum_{i=0}^{n-1} 2^{i} \gamma_{i}\right)\right), \\
\text { subject to } & 0 \leq \gamma_{i} \leq N_{i}^{r} \text { for } i \in[0, n-1] .
\end{array}
$$

■ Solved in time $O(n)!!!$ or by blackbox solvers.

- finding and proving the $O(n)$ algorithm require significant additional work

The $\mathcal{O}(n)$ Algorithm

Goal: Reduce $\left(N_{n-1}^{i}, \ldots, N_{0}^{i}\right)$ to an equivalent $\left(N_{n-1}^{\prime i}, \ldots, N_{0}^{\prime i}\right)$. Idea: 1. Find nonzero $N_{j}^{i}=2 a+b$ where $b \in\{1,2\}$.
2. Let $N_{j+1}^{\prime i}=N_{j+1}^{i}+a$ and $N_{j}^{\prime i}=b$.

$$
\begin{aligned}
& \left(N_{4}^{i}, N_{3}^{i}, N_{2}^{i}, N_{1}^{i}, N_{0}^{i}\right) \\
= & (0,6,7,0,0) \\
\rightarrow & (0,6,7,0,0) \\
\rightarrow & (0,6,7,0,0)[\text { as } 7=2 \times 3+1] \\
\rightarrow & (0,6+3,1,0,0)=(0,9,1,1,0)[\text { as } 9=2 \times 4+1] \\
\rightarrow & (0+4,1,1,0,0)=(4,1,1,0,0)[\text { as } 2=2 \times 1+2] \\
\rightarrow & (2,1,1,0,0+1)=(2,1,1,0,1)[\text { as } 1=2 \times 0+1] \\
= & \left(N_{4}^{\prime i}, N_{3}^{\prime i}, N_{2}^{\prime i}, N_{1}^{\prime i}, N_{0}^{\prime i}\right)
\end{aligned}
$$

The solution to the optimization problem is 4 (4 nonzero elements in the reduced vector.).

Breaking Chaghri and even More rounds

Table: The upper bounds of the algebraic degree for Chaghri

r	0	2	4	6	8	10	12	14	16	18	20	22	24	25	26
deg	1	3	7	7	12	17	22	27	32	37	42	47	52	58	60

Rescuing Chaghri

Achieving an (almost) exponential degree growth

- The slow growth is mainly caused by a sparse polynomial of $B(x)$, i.e. $B(x)=c_{0} x^{2^{3}}+c_{1}$
- Reason: the growth of the number of possible monomials is highly related to the density of $B(x)$
- requires significant additional work

■ Intuition: more possible monomials, higher probability that a monomial with deg $=2^{r}$ appears

- Use $B(x)=c_{0} x^{2^{8}}+c_{1} x^{2^{2}}+c_{2} x+c_{3}$ instead

Further Evolution

$$
\text { Let us consider } S(x)=x^{2^{d}+1} \text { and } B(x)=c_{0}+\sum_{i=1}^{w} c_{i} x^{2^{h_{i}}}
$$

Motivation

1 What is the generic upper bound if $w=1$?
2 How to establish theoretic relations between w and the growth of the algebraic degree?
3 How to efficiently find $\left(h_{1}, \ldots, h_{w}\right)$ to achieve the exponential growth where w is as small as possible?
4 How to upper bound the algebraic degree for arbitrary $B(x)$?

Our Results

■ If $w=1$, there is an absolute upper bound:

$$
r^{2}-2 r+3
$$

i.e. at most quadratic increase!!!

■ General influence of w : for $w=2 / 3 / 4$, the exponential growth can never be achieved at the 4 th $/ 7$ th $/ 10$ th rounds, i.e. the algebraic degree can never be $2^{4} / 2^{7} / 2^{10}$ at these rounds. For other w, we can deduce similar conclusions.

Our Results

■ Finding $\left(h_{1}, \ldots, h_{w}\right)$ to achieve the exponential growth: reduced to the feasibility to select 2^{r} different elements from $r+1$ sets of integers under some constraints.

■ Efficiently find upper bounds for arbitrary $B(x)$, though they may be loose sometimes.

Our Results

Degree evaluation for arbitrary $B(x)$ at round r

$$
\begin{aligned}
\text { maximize } & H\left(\mathcal{M}_{n}\left(\sum_{i=1}^{|Z|} 2^{z_{i}} \gamma_{z_{i}}\right)\right), \\
\text { subject to } & \gamma_{z_{i} \geq} \geq 0 \\
& \sum_{i=1}^{|Z|} \gamma_{z_{i}} \leq 2^{r} ; \\
& \left|\left\{z_{i} \mid \gamma_{z_{i}} \neq 0\right\}\right| \leq t .
\end{aligned}
$$

where the set $Z=\left\{z_{1}, \ldots, z_{|Z|}\right\} \subseteq\{0,1, \ldots, n-1\}$ and the integer $t \in[0, n-1]$ can be efficiently computed in advance.

Efficient ad-hoc algorithms?

Our Results

Example:

$$
n=20, \quad Z=\{1,3,5,8,10,14\}, \quad t=5, \quad r=15
$$

Optimization problem:

$$
\text { maximize } H\left(\mathcal{M}_{20}\left(2 \gamma_{1}+2^{3} \gamma_{3}+2^{5} \gamma_{5}+2^{8} \gamma_{8}+2^{10} \gamma_{10}+2^{14} \gamma_{14}\right)\right) \text {, }
$$

subject to $\gamma_{1}, \gamma_{3}, \gamma_{5}, \gamma_{8}, \gamma_{10}, \gamma_{14} \geq 0$;

$$
\begin{aligned}
& \gamma_{2}+\gamma_{3}+\gamma_{5}+\gamma_{8}+\gamma_{10}+\gamma_{14} \leq 2^{15} ; \\
& \left|\left\{i \mid \gamma_{i} \neq 0\right\}\right| \leq 5, \forall i \in\{1,3,5,8,10,14\}
\end{aligned}
$$

Conclusion

- An efficient degree evaluation technique in time $O(n)$ for a special cipher over $\mathbb{F}_{2^{n}}$

■ Be careful of the symmetric-key primitive design over a large finite field! (less understood)

- Open problems:
- Further improve our method for arbitrary $B(x)$.
- Study the influence of the matrix M.
- Develop other novel cryptanalytic techniques for ciphers over a large finite field

