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Background

The talks are based on three papers:

Coefficient Grouping: Breaking Chaghri and More

Coefficient Grouping for Complex Affine layers

An O(n) Algorithm for Coefficient Grouping

Special thanks to my collaborators:

Ravi Anand (University of Hyogo, Japan)

Libo Wang (University of Hyogo, Japan)

Willi Meier (FHNW, Switzerland)

Lorenzo Grassi (Ruhr University Bochum, Germany)

Clémence Bouvier (Sorbonne University & Inria, France)

Takanori Isobe (University of Hyogo & NICT, Japan)
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The Chaghri Primitive

Proposed at ACM CCS 2022

FHE-friendly block cipher

Outperforms AES (in FHE setting) by 65%

Over a large finite field F3
263
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Description of Chaghri

The round function:

S(x) = x2
32+1, B(x) = c0x

23 + c1.

State transitions:

(z0,1, z0,2, z0,3) → (z1,1, z1,2, z1,3) → · · · → (zr ,1, zr ,2, zr ,3)

· · · · · ·
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Higher-order Differential Attack over F2n

Algebraic degree of a univariate polynomial F(X ) in F2n [X ]

Let

F(X ) =
2n−1∑
i=0

uiX
i .

Then, its algebraic degree DF is defined as:

DF = max{H(i) : i ∈ [0, 2n − 1], ui ̸= 0},

where H(i) denotes the hamming weight of the integer i , i.e., the
number of ”1” in its binary representation.

Example

For F = X 230+231 + X 21+23+24 , we have DF = 3.
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Degree Evaluation for Chaghri via Enumeration

Our very naive idea:

Step 1: set the input as a univariate polynomial in X :

z0,1 = A0,1X + B0,1,

z0,2 = A0,2X + B0,2,

z0,3 = A0,3X + B0,3.

• zr ,i is always a univariate polynomial Pr ,i (X ) ∈ F2n [X ].

Step 2: trace the evolution of Pr ,i .

Step 3: compute all possible exponents in Pr ,i . (practical???)

Step 4: find the exponent with the maximal hamming weight
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Degree Evaluation for Chaghri via Enumeration

Step 2: trace the evolution of polynomials

New representation for (zr ,1, zr ,2, zr ,3)

zr ,1 =

|wr |∑
i=1

Ar ,iX
wr,i , zr ,2 =

|wr |∑
i=1

Br ,iX
wr,i , zr ,3 =

|wr |∑
i=1

Cr ,iX
wr,i

The set of all possible exponents after r rounds:

wr = {wr ,1,wr ,2, . . . ,wr ,|wr |} ⊆ N, w0 = {0, 1}.

Goal: find a relation between wr and wr+1 to compute wr

iteratively.
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Degree Evaluation for Chaghri via Enumeration

Step 2: trace the evolution of polynomials

Through S(x) = x2
32+1:

S(zr ,1) = (

|wr |∑
i=1

Ar ,iX
wr,i )2

32+20

= (

|wr |∑
i=1

Ar ,iX
wr,i )2

32 × (

|wr |∑
i=1

Ar ,iX
wr,i )2

0

=

|wr |∑
i=1

|wr |∑
j=1

Ar ,i ,jX
232wr,i+20wr,j .

where Ar ,i ,j ∈ F2n are key-dependent coefficients.
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Degree Evaluation for Chaghri via Enumeration

Step 2: trace the evolution of polynomials

Through B(x) = x2
3
:

B ◦ S(zr ,1) = c0

( |wr |∑
i=1

|wr |∑
j=1

Ar ,i ,jX
(232wr,i+20wr,j )

)23

+ c1

=

|wr |∑
i=1

|wr |∑
j=1

A′
r ,i ,jX

235wr,i+23wr,j .

The matrix M does not affect this representation:

zr+1,1 =

|wr |∑
i=1

|wr |∑
j=1

Ar+1,i ,jX
235wr,i+23wr,j
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Degree Evaluation for Chaghri via Enumeration

Step 2: trace the evolution of polynomials

The relation between wr and wr+1 is obtained as

wr+1 = {M63(e)|e = 235wr ,i + 23wr ,j , 1 ≤ i , j ≤ |wr |},

where we define

Mn(x) =

{
2n − 1 if 2n − 1|x , x ≥ 2n − 1,

x%(2n − 1) otherwise.

due to {
x2

n
= x ∀x ∈ F2n ,

x2
n−1 = 1 ∀x ∈ F2n and x ̸= 0.

Why previous methods failed: they can not handle the
modular addition!!!
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Degree Evaluation for Chaghri via Enumeration

Step 2: trace the evolution of polynomials

The relation between wr and wr+2 is obtained as

wr+1 = {M63(e) | e = 235wr,i + 23wr,j , 1 ≤ i, j ≤ |wr |},

wr+2 = {M63(e) | e = 235(235wr,i + 23wr,j ) + 23(235wr,s + 23wr,t ), 1 ≤ i, j, s, t ≤ |wr |},

= {M63(e) | e = 238(wr,i + wr,s ) + 27wr,i + 26wr,t , 1 ≤ i, j, s, t ≤ |wr |},

Why we consider wr+2: 2 rounds are treated as 1 round in
Chaghri.

Throughout this slide, we have

wr = {wr ,1,wr ,2, . . . ,wr ,|wr |}.
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Degree Evaluation for Chaghri via Enumeration

Step 3: Compute wr

Initial set:

w0 = {0, 1}.

Compute wr+2 with

wr+2 = {M63(e) | e = 238(wr ,i + wr ,s) + 27wr ,i + 26wr ,t ,

1 ≤ i , j , s, t ≤ |wr |}.

Naive enumeration quickly becomes impractical as |wr | is too
large even for small r .
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Coefficient Grouping Technique

Motivation

Do we really need to compute wr round by round?

Can we have a more elegant and general method that can
work for any

S(x) = x2
k0+2k1 ,B(x) = c1x

2k2 + c2

and a general finite field F2n?
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Coefficient Grouping Technique

Using S(x) = x2
k0+2k1 ∈ F2n [x ], B(x) = c1x

2k2 + c2 ∈ F2n [x ]

Relation between wr and wr+1:

wr+1 = {Mn(e) | e = 2k0+k2wr,i + 2k1+k2wr,j , 1 ≤ i, j ≤ |wr |}

Relation between wr and wr+2:

wr+2

= {Mn(e) | e = 2k0+k2 (2k0+k2wr,i + 2k1+k2wr,j ) + 2k1+k2 (2k0+k2wr,s + 2k1+k2wr,t ),

1 ≤ i, j, s, t ≤ |wr |}

= {Mn(e) | e = 22k0+2k2wr,i + 2k0+k1+2k2 (wr,j + wr,s ) + 22k1+2k2wr,t ,

1 ≤ i, j, s, t ≤ |wr |}.
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Coefficient Grouping Technique

Using S(x) = x2
k0+2k1 ∈ F2n [x ], B(x) = c1x

2k2 + c2 ∈ F2n [x ]

Three important properties for Mn(x), i.e. mod 2n − 1:

Mn(2
i ) = 2i mod n,

Mn(x + y) = Mn(x) +Mn(y),

Mn(x · y) = Mn

(
Mn(x) · Mn(y)

)
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Coefficient Grouping Technique

Using S(x) = x2
k0+2k1 ∈ F2n [x ], B(x) = c1x

2k2 + c2 ∈ F2n [x ]

Relation between wr and wr+ℓ:

wr+ℓ = {Mn(e) | e =

Nn−1∑
i=1

2n−1wr,di,n−1
+

Nn−2∑
i=1

2n−2wr,di,n−2
+ . . . +

N0∑
i=1

20wr,di,0
,

where 1 ≤ di,j ≤ |wr | for 0 ≤ j ≤ n − 1}.

Group all possible Nj coefficients sharing the same factor 2j :

wr ,d1,j ,wr ,d2,j , . . . ,wr ,dNj ,j
∈ wr (r = 0, w0 = {0, 1}),

i.e., in the formula of e, 2jwr ,di,j is possible to appear

wr+ℓ is fully described by a vector (Nn−1, . . . ,N0) and wr .
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Coefficient Grouping Technique

New representation of wr

r = 0:

w0 = {0, 1} = {Mn(e) | e = 20w0,i , 1 ≤ i ≤ 2 = |w0|},
→ (N0

n−1, . . . ,N
0
1 ) = (0, . . . , 0), N0

0 = 1.

Relation between wr and wr+1:

wr+1 = {Mn(e) | e = 2k0+k2wr ,i + 2k1+k2wr ,j , 1 ≤ i , j ≤ |wr |}

Find (N r
n−1, . . . ,N

r
0) to represent wr :

N r+1
i = N r

(i−(k1+k2))%n + N r
(i−(k0+k2))%n for 0 ≤ i ≤ n − 1.

(N r
n−1, . . . ,N

r
0) can be computed in time O(n).
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Coefficient Grouping Technique

Finding two representations of wr

Representation 1 of wr :

wr =

{
Mn(e) | e =

Nr
n−1∑
i=1

2n−1w0,di,n−1
+

Nr
n−2∑
i=1

2n−2w0,di,n−2
+ . . . +

Nr
0∑

i=1

20w0,di,0
,

where 1 ≤ di,j ≤ |w0| for 0 ≤ j ≤ n − 1 and w0 = {0, 1}
}
.

For each term 2j , there are N r
j possible coefficients

w0,d1,j ,w0,d2,j , . . . ,w0,dNj ,j
∈ w0 = {0, 1},

which implies
∑Nr

j

i=1 2
jw0,di,j ∈ {2jγj | 0 ≤ γj ≤ N r

j }.
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Coefficient Grouping Technique

Finding e ∈ wr with H(e) maximal

Representation 2 of wr :

wr = {Mn(e) | e =
n−1∑
i=0

2iγi , 0 ≤ γi ≤ N r
i }.

Problem reduction (optimization problem):

maximize H

(
Mn(

n−1∑
i=0

2iγi )

)
,

subject to 0 ≤ γi ≤ N r
i for i ∈ [0, n − 1].

Solved in time O(n)!!! or by blackbox solvers.

• finding and proving the O(n) algorithm require significant
additional work
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The O(n) Algorithm

Goal: Reduce (N i
n−1, . . . ,N

i
0) to an equivalent (N ′i

n−1, . . . ,N
′i
0 ).

Idea: 1. Find nonzero N i
j = 2a+ b where b ∈ {1, 2}.

2. Let N ′i
j+1 = N i

j+1 + a and N ′i
j = b.

(N i
4,N

i
3,N

i
2,N

i
1,N

i
0)

= (0, 6, 7, 0, 0)

→ (0, 6, 7, 0, 0)

→ (0, 6, 7, 0, 0) [as 7 = 2× 3 + 1]

→ (0, 6 + 3, 1, 0, 0) = (0, 9, 1, 1, 0) [as 9 = 2× 4 + 1]

→ (0 + 4, 1, 1, 0, 0) = (4, 1, 1, 0, 0) [as 2 = 2× 1 + 2]

→ (2, 1, 1, 0, 0 + 1) = (2, 1, 1, 0, 1) [as 1 = 2× 0 + 1]

= (N ′i
4 ,N

′i
3 ,N

′i
2 ,N

′i
1 ,N

′i
0 )

The solution to the optimization problem is 4 (4 nonzero elements
in the reduced vector.).
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Breaking Chaghri and even More rounds

Table: The upper bounds of the algebraic degree for Chaghri

r 0 2 4 6 8 10 12 14 16 18 20 22 24 25 26

deg 1 3 7 12 17 22 27 32 37 42 47 52 58 60 63
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Rescuing Chaghri

Achieving an (almost) exponential degree growth

The slow growth is mainly caused by a sparse polynomial of
B(x), i.e. B(x) = c0x

23 + c1

Reason: the growth of the number of possible monomials is
highly related to the density of B(x)

• requires significant additional work

Intuition: more possible monomials, higher probability that a
monomial with deg = 2r appears

Use B(x) = c0x
28 + c1x

22 + c2x + c3 instead
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Further Evolution

Let us consider S(x) = x2
d+1 and B(x) = c0 +

∑w
i=1 cix

2hi

Motivation

1 What is the generic upper bound if w = 1?

2 How to establish theoretic relations between w and the
growth of the algebraic degree?

3 How to efficiently find (h1, . . . , hw ) to achieve the exponential
growth where w is as small as possible?

4 How to upper bound the algebraic degree for arbitrary B(x)?
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Our Results

If w = 1, there is an absolute upper bound:

r2 − 2r + 3,

i.e. at most quadratic increase!!!

General influence of w : for w = 2/3/4, the exponential
growth can never be achieved at the 4th/7th/10th rounds, i.e.
the algebraic degree can never be 24/27/210 at these rounds.
For other w , we can deduce similar conclusions.
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Our Results

Finding (h1, . . . , hw ) to achieve the exponential growth:
reduced to the feasibility to select 2r different elements from
r + 1 sets of integers under some constraints.

Efficiently find upper bounds for arbitrary B(x), though they
may be loose sometimes.
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Our Results

Degree evaluation for arbitrary B(x) at round r

maximize H

Mn

 |Z |∑
i=1

2ziγzi

 ,

subject to γzi ≥ 0;

|Z |∑
i=1

γzi ≤ 2r ;

|{zi | γzi ̸= 0}| ≤ t.

where the set Z = {z1, . . . , z|Z |} ⊆ {0, 1, . . . , n − 1} and the
integer t ∈ [0, n − 1] can be efficiently computed in advance.

Efficient ad-hoc algorithms?
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Our Results

Example:

n = 20, Z = {1, 3, 5, 8, 10, 14}, t = 5, r = 15

Optimization problem:

maximize H

(
M20

(
2γ1 + 23γ3 + 25γ5 + 28γ8 + 210γ10 + 214γ14

))
,

subject to γ1, γ3, γ5, γ8, γ10, γ14 ≥ 0;

γ2 + γ3 + γ5 + γ8 + γ10 + γ14 ≤ 215;

|{i | γi ̸= 0}| ≤ 5, ∀i ∈ {1, 3, 5, 8, 10, 14}
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Conclusion

An efficient degree evaluation technique in time O(n) for a
special cipher over F2n

Be careful of the symmetric-key primitive design over a large
finite field! (less understood)

Open problems:

Further improve our method for arbitrary B(x).
Study the influence of the matrix M.
Develop other novel cryptanalytic techniques for ciphers over a
large finite field
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