

Horst and Amaryllises: Possible Generalizations of the Feistel and of the Lai-Massey Schemes ASK 2023, December 2023

Lorenzo Grassi Ruhr-Universität Bochum, Germany RUR

RUHR UNIVERSITÄT

SPN and Feistel Schemes

The majority of the symmetric schemes follows one of the two following design strategies:

Substitution Permutation Network (SPN):

 $(x_0, x_1, \ldots, x_{n-1}) \mapsto c + M \times (\mathsf{S}(x_0), \mathsf{S}(x_1), \ldots, \mathsf{S}(x_{n-1}))$

New applications such as Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK) require symmetric-key primitives that

- ▶ are naturally defined over \mathbb{F}_p^n for a large prime p (such as $p \approx 2^{128}$ or 2^{256})
- minimize their multiplicative complexity, i.e., the number of multiplications (= nonlinear operations) required to compute and/or verify them.

Questions:

1. Is it possible to set up *new invertible non-linear layers* over \mathbb{F}_q^n for $q = p^s$?

2. Is it possible to achieve better security argument and/or performances via them?

New applications such as Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK) require symmetric-key primitives that

- ▶ are naturally defined over \mathbb{F}_p^n for a large prime p (such as $p \approx 2^{128}$ or 2^{256})
- minimize their multiplicative complexity, i.e., the number of multiplications (= nonlinear operations) required to compute and/or verify them.

Questions:

- 1. Is it possible to set up *new invertible non-linear layers* over \mathbb{F}_q^n for $q = p^s$?
- 2. Is it possible to achieve better security argument and/or performances via them?

1 From Feistel to Horst Schemes

2 Lai-Massey Schemes: Relation between Feistel and Generalizations

- **3** Amaryllises Schemes
- 4 Summary and Open Problems

Table of Contents

1 From Feistel to Horst Schemes

Dai-Massey Schemes: Relation between Feistel and Generalizations

- 3 Amaryllises Schemes
- 4 Summary and Open Problems

From Feistel to Horst Schemes

Feistel scheme
$$\mathcal{F}$$
 over \mathbb{F}_q^2 (where $q = p^s$ for $s \ge 1$ and a prime $p \ge 2$):

$$(x_0, x_1) \mapsto (y_0, y_1) = (x_1, x_0 + F(x_1)),$$

where $F : \mathbb{F}_q \to \mathbb{F}_q$. Always invertible independently of $F : x_0 = y_1 - F(x_1) = y_1 - F(y_0)$.

Horst as a possible generalization:

 $(x_0, x_1) \mapsto (y_0, y_1) := (x_1, x_0 \cdot \mathsf{G}(x_1) + \mathsf{F}(x_1)),$

where $G : \mathbb{F}_q \to \mathbb{F}_q \setminus \{0\}$. Invertible as well:

$$(x_0, x_1) = \left(\frac{y_1 - F(y_0)}{G(y_0)}, y_0\right) \,.$$

From Feistel to Horst Schemes

Feistel scheme \mathcal{F} over \mathbb{F}_q^2 (where $q = p^s$ for $s \ge 1$ and a prime $p \ge 2$):

$$(x_0, x_1) \mapsto (y_0, y_1) = (x_1, x_0 + F(x_1)),$$

where $F : \mathbb{F}_q \to \mathbb{F}_q$. Always invertible independently of $F : x_0 = y_1 - F(x_1) = y_1 - F(y_0)$.

Horst as a possible generalization:

$$(x_0, x_1) \mapsto (y_0, y_1) := (x_1, x_0 \cdot G(x_1) + F(x_1)),$$

where $G : \mathbb{F}_q \to \mathbb{F}_q \setminus \{0\}$. Invertible as well:

$$(x_0, x_1) = \left(\frac{y_1 - F(y_0)}{G(y_0)}, y_0\right) \,.$$

Horst Schemes over \mathbb{F}_q^n [GHR+23]

The Horst scheme over \mathbb{F}_{q}^{n} :

$$y_i := \begin{cases} x_{i+1} \cdot \mathsf{G}^{(i+1)}(x_i, x_{i-1}, \dots, x_0) + \mathsf{F}^{(i+1)}(x_i, x_{i-1}, \dots, x_0) & \text{otherwise } (i \in \{0, 1, \dots, n-2\}), \\ x_0 & \text{if } i = n-1, \end{cases}$$

where $\mathsf{F}^{(j)}: \mathbb{F}_q^j \to \mathbb{F}_q$ and $\mathsf{G}^{(j)}: \mathbb{F}_q^j \to \mathbb{F}_q \setminus \{\mathbf{0}\}.$

Constructing $G : \mathbb{F}_q \to \mathbb{F}_q \setminus \{0\}$ (1/3)

If q small (e.g., $q \approx 2^8$) and no particular condition on G: easy task! (E.g., brute force). **Our Goal:** construct low-degree G over any \mathbb{F}_q .

1st Example: Let $q = p \ge 3$ be a prime. Remember: $x \mapsto x^2$ is not invertible. Define

$$\mathsf{G}(x) := x^2 + \alpha \cdot x + \beta$$

such that $\alpha, \beta \in \mathbb{F}_p$ satisfies $\alpha^2 - 4 \cdot \beta \neq z^2$ for each $z \in \mathbb{F}_p$. Then, G(x) = 0 if and only if

$$\mathbf{x} = (-\alpha \pm \sqrt{\alpha^2 - 4 \cdot \beta})/2 \,,$$

which do not exist!

Constructing $G : \mathbb{F}_q \to \mathbb{F}_q \setminus \{0\}$ (1/3)

If q small (e.g., $q \approx 2^8$) and no particular condition on G: easy task! (E.g., brute force). **Our Goal:** construct low-degree G over any \mathbb{F}_q .

1st Example: Let $q = p \ge 3$ be a prime. Remember: $x \mapsto x^2$ is not invertible. Define

$$\mathsf{G}(x) := x^2 + \alpha \cdot x + \beta$$

such that $\alpha, \beta \in \mathbb{F}_p$ satisfies $\alpha^2 - 4 \cdot \beta \neq z^2$ for each $z \in \mathbb{F}_p$. Then, G(x) = 0 if and only if

$$x = (-\alpha \pm \sqrt{\alpha^2 - 4 \cdot \beta})/2,$$

which do not exist!

Constructing $G : \mathbb{F}_q \to \mathbb{F}_q \setminus \{0\}$ (2/3)

Given a generic G over \mathbb{F}_q : very expensive to check if G returns zero or not!

Lemma 1

Let $G : \mathbb{F}_q \to \mathbb{F}_q$ be such that (i) $G(0) \neq 0$ and (ii) $H(x) := x \cdot G(x)$ is a permutation. Then, $G(x) \neq 0$ for each $x \in \mathbb{F}_q$.

Proof.

Obviously, H(0) = 0. Since H is a permutation, then $H(x) \neq 0$ for each $x \in \mathbb{F}_q \setminus \{0\}$ Hence:

$$orall x \in \mathbb{F}_q \setminus \{0\}: \qquad \mathsf{G}(x) = rac{\mathsf{H}(x)}{x}
eq 0 \,.$$

By assumption, $G(0) \neq 0$. Hence, $G(x) \neq 0$ for each x.

Constructing $G : \mathbb{F}_q \to \mathbb{F}_q \setminus \{0\}$ (2/3)

Given a generic G over \mathbb{F}_q : very expensive to check if G returns zero or not!

Lemma 1

Let $G : \mathbb{F}_q \to \mathbb{F}_q$ be such that (i) $G(0) \neq 0$ and (ii) $H(x) := x \cdot G(x)$ is a permutation. Then, $G(x) \neq 0$ for each $x \in \mathbb{F}_q$.

Proof.

Obviously, H(0) = 0. Since H is a permutation, then $H(x) \neq 0$ for each $x \in \mathbb{F}_q \setminus \{0\}$. Hence:

$$\forall x \in \mathbb{F}_q \setminus \{0\}: \qquad \mathsf{G}(x) = \frac{\mathsf{H}(x)}{x} \neq 0.$$

By assumption, $G(0) \neq 0$. Hence, $G(x) \neq 0$ for each x.

Constructing $G : \mathbb{F}_q \to \mathbb{F}_q \setminus \{0\}$ (3/3)

2nd Example: Let $x \mapsto x^d$ be a permutation over \mathbb{F}_q , and let $\alpha \in \mathbb{F}_q \setminus \{0\}$. The function

$$\mathsf{G}(x) := \frac{(x+\alpha)^d - \alpha^d}{x} = \sum_{i=1}^d \binom{d}{i} \cdot \alpha^i \cdot x^{d-1-i}$$

never returns zero (since $G(0) = d \cdot \alpha \neq 0$ and $G(x) \cdot x = (x + \alpha)^d - \alpha^d$ is invertible).

3rd Example: Over \mathbb{F}_{2^n} , let

$$\mathsf{G}(x) = \sum_{i=0}^{a} \alpha_i \cdot x^{2^i - 1} \,.$$

for $\alpha_0 \neq 0$. Choose $\alpha_1, \alpha_2, \ldots, \alpha_d \in \mathbb{F}_{2^n}$ such that $G(x) \cdot x = \sum_{i=0}^d \alpha_i \cdot x^{2^i}$ is invertible (note that $x \cdot G(x)$ is a linear map \rightarrow easy to check!). Then, G never returns zero.

Constructing $G : \mathbb{F}_q \to \mathbb{F}_q \setminus \{0\}$ (3/3)

2nd Example: Let $x \mapsto x^d$ be a permutation over \mathbb{F}_q , and let $\alpha \in \mathbb{F}_q \setminus \{0\}$. The function

$$\mathsf{G}(x) := \frac{(x+\alpha)^d - \alpha^d}{x} = \sum_{i=1}^d \binom{d}{i} \cdot \alpha^i \cdot x^{d-1-i}$$

never returns zero (since $G(0) = d \cdot \alpha \neq 0$ and $G(x) \cdot x = (x + \alpha)^d - \alpha^d$ is invertible).

3rd Example: Over \mathbb{F}_{2^n} , let

$$\mathsf{G}(x) = \sum_{i=0}^{d} \alpha_i \cdot x^{2^i - 1} \,.$$

for $\alpha_0 \neq 0$. Choose $\alpha_1, \alpha_2, \ldots, \alpha_d \in \mathbb{F}_{2^n}$ such that $G(x) \cdot x = \sum_{i=0}^d \alpha_i \cdot x^{2^i}$ is invertible (note that $x \cdot G(x)$ is a linear map \rightarrow easy to check!). Then, G never returns zero. Horst and Amaryllises: Possible Generalizations of the Feistel and of the Lai-Massey Schemes—ASK 2023—December 2023 10/33

Non-linear layer $S(x_0, x_1, \ldots, x_{t-1}) = y_0 ||y_1|| \ldots ||y_{t-1}$ over \mathbb{F}_p^t defined as

$$y_{i} = \begin{cases} x_{0}^{1/d} & \text{if } i = 0, \\ x_{1}^{d} & \text{if } i = 1, \\ x_{2} \cdot ((L_{i}(y_{0}, y_{1}, 0))^{2} + \alpha_{2} \cdot L_{i}(y_{0}, y_{1}, 0) + \beta_{2}) & \text{if } i = 2, \\ x_{i} \cdot ((L_{i}(y_{0}, y_{1}, x_{i-1}))^{2} + \alpha_{i} \cdot L_{i}(y_{0}, y_{1}, x_{i-1}) + \beta_{i}) & \text{otherwise,} \end{cases}$$

where gcd(d, p-1) = 1 and $L_i : \mathbb{F}_p^3 \to \mathbb{F}_p$ are linear functions.

$x \mapsto x^{1/d}$ is quite expensive \longrightarrow our goal: minimize the number of rounds!

GRIFFIN^{\times} instantiated with Horst allows *stronger security argument* against Gröbner basis attacks w.r.t. GRIFFIN⁺ instantiated with Feistel:

roughly speaking, cost of Gröbner basis attacks given by

$$O\left(\left(\frac{D_{\mathrm{reg}}+n_{\mathrm{v}}}{n_{\mathrm{v}}}\right)^{2}\right)$$

where D_{reg} = degree of regularity, and n_v = number of variables;

▶ GRIFFIN⁺: *D*_{reg} remains almost constant w.r.t. the number of rounds → hard to estimate the minimum number for guaranteeing security!

• GRIFFIN[×]: D_{reg} growths with the number of rounds.

 $x \mapsto x^{1/d}$ is quite expensive \longrightarrow our goal: minimize the number of rounds!

 $GRIFFIN^{\times}$ instantiated with Horst allows stronger security argument against Gröbner basis attacks w.r.t. $GRIFFIN^+$ instantiated with Feistel:

roughly speaking, cost of Gröbner basis attacks given by

$$O\left(\left(\frac{D_{\mathrm{reg}}+n_{\mathrm{v}}}{n_{\mathrm{v}}}\right)^{2}\right)$$

where $D_{reg} = degree$ of regularity, and $n_v = number$ of variables;

▶ GRIFFIN⁺: D_{reg} remains almost constant w.r.t. the number of rounds → hard to estimate the minimum number for guaranteeing security!

• GRIFFIN[×]: D_{reg} growths with the number of rounds.

 $x \mapsto x^{1/d}$ is quite expensive \longrightarrow our goal: minimize the number of rounds!

 $GRIFFIN^{\times}$ instantiated with Horst allows stronger security argument against Gröbner basis attacks w.r.t. $GRIFFIN^+$ instantiated with Feistel:

roughly speaking, cost of Gröbner basis attacks given by

$$\mathcal{O}\left(\left(\frac{D_{\mathrm{reg}}+n_{\mathrm{v}}}{n_{\mathrm{v}}}\right)^{2}\right)$$

where $D_{\rm reg} =$ degree of regularity, and $n_v =$ number of variables;

▶ GRIFFIN⁺: D_{reg} remains almost constant w.r.t. the number of rounds → hard to estimate the minimum number for guaranteeing security!

• GRIFFIN[×]: D_{reg} growths with the number of rounds.

 $x \mapsto x^{1/d}$ is quite expensive \longrightarrow our goal: minimize the number of rounds!

 $GRIFFIN^{\times}$ instantiated with Horst allows stronger security argument against Gröbner basis attacks w.r.t. $GRIFFIN^+$ instantiated with Feistel:

roughly speaking, cost of Gröbner basis attacks given by

$$\mathcal{O}\left(\left(\frac{D_{\mathrm{reg}}+n_{\mathrm{v}}}{n_{\mathrm{v}}}\right)^{2}\right)$$

where $D_{\rm reg} =$ degree of regularity, and $n_v =$ number of variables;

- ▶ GRIFFIN⁺: D_{reg} remains almost constant w.r.t. the number of rounds → hard to estimate the minimum number for guaranteeing security!
- ► GRIFFIN[×]: *D*_{reg} growths with the number of rounds.

From Feistel to Horst Schemes

2 Lai-Massey Schemes: Relation between Feistel and Generalizations

- 3 Amaryllises Schemes
- 4 Summary and Open Problems

Lai-Massey Schemes over \mathbb{F}_q^2

Let $q = p^s$ be as before. Lai-Massey scheme \mathcal{LM} over \mathbb{F}_q^2 :

$$(x_0, x_1) \mapsto (y_0, y_1) = (\alpha \cdot (x_0 + F(x_0 - x_1)), x_1 + F(x_0 - x_1))$$

where $F : \mathbb{F}_q \to \mathbb{F}_q$ and $\alpha \neq 0$. \mathcal{LM} is invertible independently of the details of F:

$$(x_0, x_1) = (y'_0 - F(y'_0 - y_1), y_1 - F(y'_0 - y_1)),$$

since $x_0 - x_1 = y'_0 - y_1$ where $y'_0 = y_0 / \alpha$.

Remark: $\alpha \notin \{0,1\}$ crucial for *destroying the invariant subspace* $\langle [1,1] \rangle \subseteq \mathbb{F}_{q}^{2}$ $(\alpha = 1 \text{ fixed in the following for simplicity!})$

Lai-Massey Schemes over \mathbb{F}_q^2

Let $q = p^s$ be as before. Lai-Massey scheme \mathcal{LM} over \mathbb{F}_q^2 :

$$(x_0, x_1) \mapsto (y_0, y_1) = (\alpha \cdot (x_0 + F(x_0 - x_1)), x_1 + F(x_0 - x_1))$$

where $F : \mathbb{F}_q \to \mathbb{F}_q$ and $\alpha \neq 0$. \mathcal{LM} is invertible independently of the details of F:

$$(x_0, x_1) = (y'_0 - F(y'_0 - y_1), y_1 - F(y'_0 - y_1)),$$

since $x_0 - x_1 = y'_0 - y_1$ where $y'_0 = y_0 / \alpha$.

Remark: $\alpha \notin \{0,1\}$ crucial for *destroying the invariant subspace* $\langle [1,1] \rangle \subseteq \mathbb{F}_q^2$. ($\alpha = 1$ fixed in the following for simplicity!)

Lai-Massey Schemes over \mathbb{F}_q^n

Let $n \geq 3$. For each $i \in \{0, 1, \dots, n-2\}$, let $\lambda_0^{(i)}, \lambda_1^{(i)}, \dots, \lambda_{n-1}^{(i)} \in \mathbb{F}_q$ be such that

 $\sum_{j=0}^{n-1} \lambda_j^{(i)} = 0.$

The Lai-Massey scheme over \mathbb{F}_q^n is defined as $(x_0,x_1,\ldots,x_{n-1})\mapsto (y_0,y_1,\ldots,y_{n-1})$ where

$$\forall i \in \{0, 1, \dots, n-1\}: \qquad y_i := x_i + \mathsf{F}\left(\sum_{j=0}^{n-1} \lambda_j^{(0)} \cdot x_j, \sum_{j=0}^{n-1} \lambda_j^{(1)} \cdot x_j, \dots, \sum_{j=0}^{n-1} \lambda_j^{(n-2)} \cdot x_j\right)$$

where $F : \mathbb{F}_{q}^{n-1} \to \mathbb{F}_{q}$. As before, invertibility follows from $\sum_{i=0}^{n-1} \lambda_{i}^{(i)} \cdot x_{j} = \sum_{i=0}^{n-1} \lambda_{i}^{(i)} \cdot y_{j}$.

Lai-Massey Schemes over \mathbb{F}_q^n

Let $n \geq 3$. For each $i \in \{0, 1, \ldots, n-2\}$, let $\lambda_0^{(i)}, \lambda_1^{(i)}, \ldots, \lambda_{n-1}^{(i)} \in \mathbb{F}_q$ be such that

 $\sum_{j=0}^{n-1} \lambda_j^{(i)} = 0.$

The Lai-Massey scheme over \mathbb{F}_q^n is defined as $(x_0, x_1, \ldots, x_{n-1}) \mapsto (y_0, y_1, \ldots, y_{n-1})$ where

$$\forall i \in \{0, 1, \dots, n-1\}: \qquad y_i := x_i + \mathsf{F}\left(\sum_{j=0}^{n-1} \lambda_j^{(0)} \cdot x_j, \sum_{j=0}^{n-1} \lambda_j^{(1)} \cdot x_j, \dots, \sum_{j=0}^{n-1} \lambda_j^{(n-2)} \cdot x_j\right)$$

where $F : \mathbb{F}_q^{n-1} \to \mathbb{F}_q$. As before, invertibility follows from $\sum_{j=0}^{n-1} \lambda_j^{(i)} \cdot x_j = \sum_{j=0}^{n-1} \lambda_j^{(i)} \cdot y_j$.

Relation between Feistel and Lai-Massey Schemes

Theorem 2 ([Gra22])

A Lai-Massey scheme \mathcal{LM} over \mathbb{F}_q^n is extended Affine-Equivalent (AE) to a generalized Feistel scheme \mathcal{F} over \mathbb{F}_q^n , that is, there exists two affine permutation A, B and an affine function C over \mathbb{F}_q^n such that

$$\forall x \in \mathbb{F}_q^n$$
: $\mathcal{F}(x) = B \circ \mathcal{LM} \circ A(x) + C(x)$.

For each $j \in \{1, 2, ..., n-1\}$, let $F^{(j)} : \mathbb{F}_q^j \to \mathbb{F}_q$. The generalized Feistel scheme over \mathbb{F}_q^n is defined as $(x_0, x_1, ..., x_{n-1}) \mapsto (y_0, y_1, ..., y_{n-1})$ where:

$$y_i := \begin{cases} x_{i+1} + \mathsf{F}^{(i+1)}(x_i, x_{i-1}, \dots, x_0) & \text{otherwise } (i \in \{0, 1, \dots, n-2\}) \\ x_0 & \text{if } i = n-1 \,, \end{cases}$$

Relation between Feistel and Lai-Massey Schemes

Theorem 2 ([Gra22])

A Lai-Massey scheme \mathcal{LM} over \mathbb{F}_q^n is extended Affine-Equivalent (AE) to a generalized Feistel scheme \mathcal{F} over \mathbb{F}_q^n , that is, there exists two affine permutation A, B and an affine function C over \mathbb{F}_q^n such that

$$\forall x \in \mathbb{F}_q^n$$
: $\mathcal{F}(x) = B \circ \mathcal{LM} \circ A(x) + C(x)$.

For each $j \in \{1, 2, ..., n-1\}$, let $\mathbb{F}_q^{(j)} : \mathbb{F}_q^j \to \mathbb{F}_q$. The generalized Feistel scheme over \mathbb{F}_q^n is defined as $(x_0, x_1, ..., x_{n-1}) \mapsto (y_0, y_1, ..., y_{n-1})$ where:

$$y_i := \begin{cases} x_{i+1} + \mathsf{F}^{(i+1)}(x_i, x_{i-1}, \dots, x_0) & \text{otherwise } (i \in \{0, 1, \dots, n-2\}), \\ x_0 & \text{if } i = n-1, \end{cases}$$

Proof of the Relation \mathbb{F}_q^2

 \mathcal{LM} over \mathbb{F}_q^2 defined as $(x_0, x_1) \mapsto (x_0 + F(x_0 - x_1), x_1 + F(x_0 - x_1))$ is affine-equivalent to $(x_0, x_1) \mapsto (x_1 + F(x_0), x_0)$ via the invertible linear transformations

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \qquad \text{and} \qquad B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

and C = 0. Indeed:

$$\begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \xrightarrow{A \times \cdot} \begin{bmatrix} x_0 - x_1 \\ x_1 \end{bmatrix} \xrightarrow{\mathcal{F}(\cdot)} \begin{bmatrix} x_1 + \mathsf{F}(x_0 - x_1) \\ x_0 - x_1 \end{bmatrix} \xrightarrow{B \times \cdot} \begin{bmatrix} x_0 + \mathsf{F}(x_0 - x_1) \\ x_1 + \mathsf{F}(x_0 - x_1) \end{bmatrix}$$

(See [Gra22] for the proof regarding the general case \mathbb{F}_{q}^{n} .)

Open Questions

- Is it possible to transfer the results published in the literature (including indistinguishability, indifferentiability, ...) for Feistel schemes to Lai-Massey schemes?
- Is it possible to generalize the Lai-Massey scheme such that the (extended) affine equivalence to Feistel schemes does **not** hold?

Generalized Lai-Massey Scheme

Definition 3 ([Gra22])

Let $n \ge 2$. For each $i \in \{0, 1, ..., n-2\}$, let $\lambda_0^{(i)}, \lambda_1^{(i)}, ..., \lambda_{n-1}^{(i)} \in \mathbb{F}_q$ be s.t. $\sum_{l=0}^{t-1} \lambda_l^{(i)} = 0$.

We say that the scheme $(x_0, x_1, ..., x_{n-1}) \mapsto (y_0, y_1, ..., y_{n-1}) := \mathcal{LM}^G(x_0, x_1, ..., x_{n-1})$ where

$$\forall i \in \{0, 1, \dots, n-1\}: \quad y_i := x_i + \mathsf{F}_i(z_0, z_1, \dots, z_{n-2})$$

such that $F_0, F_1, \ldots, F_{n-1} : \mathbb{F}_q^{n-1} \to \mathbb{F}_q$ and

$$\forall j \in \{0, 1, \dots, n-2\}: \qquad z_j := \sum_{l=0}^{n-1} \lambda_l^{(j)} x_l$$

is a "Generalized Lai-Massey" scheme if it is invertible.

Generalized Lai-Massey Scheme: Example

Let $p \ge 3$. The generalized Lai-Massey scheme defined as

$$y_{0} = x_{0} + \mathsf{F}^{(1)}(x_{0} - x_{1}) + \mathsf{F}^{(3)}(x_{0} - x_{1}, x_{1} - x_{2}, x_{2} - x_{3})$$

$$y_{1} = x_{1} + \mathsf{F}^{(1)}(x_{0} - x_{1}) + \mathsf{F}^{(3)}(x_{0} - x_{1}, x_{1} - x_{2}, x_{2} - x_{3})$$

$$y_{2} = x_{2} + \mathsf{F}^{(2)}(x_{0} - x_{1}, x_{2} - x_{3}) + \mathsf{F}^{(3)}(x_{0} - x_{1}, x_{1} - x_{2}, x_{2} - x_{3})$$

$$y_{3} = x_{3} + \mathsf{F}^{(2)}(x_{0} - x_{1}, x_{2} - x_{3}) + \mathsf{F}^{(3)}(x_{0} - x_{1}, x_{1} - x_{2}, x_{2} - x_{3})$$
for $\mathsf{F}^{(i)} : \mathbb{F}_{p}^{i} \to \mathbb{F}_{p}$ with $i \in \{1, 2, 3\}$ is

invertible:

invertible:

$$\begin{aligned} & x_0 - x_1 = y_0 - y_1; & x_2 - x_3 = y_2 - y_3; \\ & x_1 - x_2 = y_1 - y_2 - \mathsf{F}^{(1)}(y_0 - y_1) - \mathsf{F}^{(2)}(y_0 - y_1, y_2 - y_3) \end{aligned}$$

► not extended affine equivalent to any Feistel scheme (see [Gra22] for the proof). Horst and Amaryllises: Possible Generalizations of the Feistel and of the Lai-Massey Schemes—ASK 2023—December 2023

Redundant Lai-Massey Scheme

Definition 4 ([Gra22])

Let $n \ge 2$. We say that the scheme $(x_0, x_1, \ldots, x_{n-1}) \mapsto (y_0, y_1, \ldots, y_{n-1}) := \mathcal{LM}^R(x_0, x_1, \ldots, x_{n-1})$ where

$$\forall i \in \{0, 1, \dots, n-1\}: \quad y_i := x_i + F(x_0, x_1, \dots, x_{n-1})$$

such that $F : \mathbb{F}_q^n \to \mathbb{F}_q$ is a "Redundant Lai-Massey" scheme **if** it is invertible.

Redundant Lai–Massey Scheme: Example (1/2)

Let $p \ge 3$ be a prime integer. Let $\alpha \in \mathbb{F}_p \setminus \{0\}$ be such that $-2 \cdot \alpha \neq z^2$ for each $z \in \mathbb{F}_p$. Then,

$$(x_0, x_1) \mapsto (y_0, y_1) := (x_0 + z, x_1 + z)$$

where

$$z := \alpha \cdot (x_0 - x_1)^2 \cdot (x_0 + x_1)$$

is a redundant Lai-Massey scheme. Invertibility follows from:

•
$$y_0 - y_1 = x_0 - x_1$$
;
• hence, $y_0 + y_1 = (x_0 + x_1) \cdot (1 + 2\alpha \cdot (y_0 - y_1)^2)$, which implies
 $y_0 + y_1$

$$x_0 + x_1 = \frac{y_0 + y_1}{1 + 2\alpha \cdot (y_0 - y_1)^2}$$

where $1 + 2\alpha \cdot z^2 \neq 0$ by assumption on α .

Redundant Lai–Massey Scheme: Example (1/2)

Let $p \ge 3$ be a prime integer. Let $\alpha \in \mathbb{F}_p \setminus \{0\}$ be such that $-2 \cdot \alpha \neq z^2$ for each $z \in \mathbb{F}_p$. Then,

$$(x_0, x_1) \mapsto (y_0, y_1) := (x_0 + z, x_1 + z)$$

where

$$z := \alpha \cdot (x_0 - x_1)^2 \cdot (x_0 + x_1)$$

is a redundant Lai-Massey scheme. Invertibility follows from:

►
$$y_0 - y_1 = x_0 - x_1$$
;

• hence, $y_0 + y_1 = (x_0 + x_1) \cdot (1 + 2\alpha \cdot (y_0 - y_1)^2)$, which implies

$$x_0 + x_1 = \frac{y_0 + y_1}{1 + 2\alpha \cdot (y_0 - y_1)^2}$$

where $1 + 2\alpha \cdot z^2 \neq 0$ by assumption on α .

Redundant Lai-Massey Scheme: Example (2/2)

It is **not** extended affine equivalent to any Feistel scheme over \mathbb{F}_p^2 .

Roughly speaking, reason:

- Feistel $\mathcal{F}(x_0, x_1) = (x_1 + F(x_0), x_0)$: F depends on one input only;
- ▶ redundant Lai-Massey $\mathcal{LM}^R(x_0, x_1) = (x_0 + G(x_0, x_1), x_1 + G(x_0, x_1))$ just proposed:

$$G(x_0, x_1) = \alpha \cdot (x_0 - x_1)^2 \cdot (x_0 + x_1)$$

depends on two inputs.

(Note that $x_0 - x_1$ and $x_0 + x_1$ are linearly independent)

From Feistel to Horst Schemes

2 Lai-Massey Schemes: Relation between Feistel and Generalizations

- **3** Amaryllises Schemes
- 4 Summary and Open Problems

Amaryllises Schemes [Gra22]

Let
$$q = p^s$$
 as before, and let $n \ge 2$. Let

- 1. $F : \mathbb{F}_q \to \mathbb{F}_q$ be a function s.t. (i) $F(0) \neq 0$ and (ii) $G(x) := x \cdot F(x)$ is invertible over \mathbb{F}_q (similar to before!);
- 2. $H : \mathbb{F}_q^{n-1} \to \mathbb{F}_q$ be any function;
- 3. $\beta_0, \beta_1, \ldots, \beta_{n-1} \in \mathbb{F}_q \setminus \{0\}$ s.t. $\sum_{i=0}^{n-1} \beta_i = 0$ if H is not identically equal to zero; 4. $\forall j \in \{0, 1, \ldots, n-2\}$, let $\{\gamma_i^{(j)}\}_{i \in \{0, 1, \ldots, n-1\}}$ be s.t. $\gamma_i^{(j)} \in \mathbb{F}_q$ and $\sum_{i=0}^{n-1} \gamma_i^{(j)} = 0$.

The Amaryllises scheme $\mathcal A$ over $\mathbb F_q^n$ defined as $\mathcal A(x_0,x_1,\ldots,x_{t-1}):=y_0\|y_1\|\ldots\|y_{n-1}$ where

$$y_i = x_i \cdot \mathsf{F}\left(\sum_{j=0}^{n-1} \beta_j \cdot x_j\right) + \mathsf{H}\left(\sum_{j=0}^{n-1} \gamma_j^{(0)} \cdot x_j, \dots, \sum_{j=0}^{n-1} \gamma_j^{(n-2)} \cdot x_j\right)$$

for each $i \in \{0, 1, \dots, n-1\}$ is invertible.

Amaryllises Schemes [Gra22]

Let
$$q = p^s$$
 as before, and let $n \ge 2$. Let

- 1. $F : \mathbb{F}_q \to \mathbb{F}_q$ be a function s.t. (i) $F(0) \neq 0$ and (ii) $G(x) := x \cdot F(x)$ is invertible over \mathbb{F}_q (similar to before!);
- 2. $H : \mathbb{F}_q^{n-1} \to \mathbb{F}_q$ be any function;
- 3. $\beta_0, \beta_1, \ldots, \beta_{n-1} \in \mathbb{F}_q \setminus \{0\}$ s.t. $\sum_{i=0}^{n-1} \beta_i = 0$ if H is not identically equal to zero ; 4. $\forall j \in \{0, 1, \ldots, n-2\}$, let $\{\gamma_i^{(j)}\}_{i \in \{0, 1, \ldots, n-1\}}$ be s.t. $\gamma_i^{(j)} \in \mathbb{F}_q$ and $\sum_{i=0}^{n-1} \gamma_i^{(j)} = 0$.

The Amaryllises scheme \mathcal{A} over \mathbb{F}_q^n defined as $\mathcal{A}(x_0, x_1, \dots, x_{t-1}) := y_0 \|y_1\| \dots \|y_{n-1}\|$ where

$$y_i = x_i \cdot \mathsf{F}\left(\sum_{j=0}^{n-1} \beta_j \cdot x_j\right) + \mathsf{H}\left(\sum_{j=0}^{n-1} \gamma_j^{(0)} \cdot x_j, \dots, \sum_{j=0}^{n-1} \gamma_j^{(n-2)} \cdot x_j\right)$$

for each $i \in \{0, 1, \dots, n-1\}$ is invertible.

Invertibility of Amaryllises Schemes

Invertibility follows from:

• recover
$$\sum_{i=0}^{n-1} \beta_i \cdot x_i$$
 by exploiting (1) and (3):

$$\sum_{i=0}^{n-1} \beta_i \cdot y_i = \left(\sum_{i=0}^{n-1} \beta_i \cdot x_i\right) \cdot \mathsf{F}\left(\sum_{i=0}^{n-1} \beta_i \cdot x_i\right) + \mathsf{H}\left(\sum_{i=0}^{n-1} \gamma_i^{(0)} \cdot x_i, \dots, \sum_{i=0}^{n-1} \gamma_i^{(n-1)} \cdot x_i\right) \cdot \underbrace{\sum_{i=0}^{n-1} \beta_i}_{=0}$$
$$= \mathsf{G}\left(\sum_{i=0}^{n-1} \beta_i \cdot x_i\right) \longrightarrow \sum_{i=0}^{n-1} \beta_i \cdot x_i = \mathsf{G}^{-1}\left(\sum_{i=0}^{n-1} \beta_i \cdot y_i\right);$$

• given $\sum_{i=0}^{n-1} \beta_i \cdot x_i$ and since $F(z) \neq 0$ for each $z \in \mathbb{F}_q$, recover $\sum_{j=0}^{n-1} \gamma_j^{(i)} \cdot x_j$ as in a standard Lai-Massey scheme.

Contracting-Amaryllises Schemes [Gra22]

Let $q = p^s$ as before, and let $n \ge 2$. Let

- 1. $e \ge 1$ be an integer such that gcd(e, q 1) = 1;
- 2. $F : \mathbb{F}_q^n \to \mathbb{F}_q \setminus \{0\}$ be a function that (i) never returns zero for any non-zero input (i.e., F(x) = 0 if only if $x = 0 \in \mathbb{F}_q^n$), and s.t. (ii) the function $G_{\alpha_0,\alpha_1,...,\alpha_{n-1}}(x) : \mathbb{F}_q \to \mathbb{F}_q$ defined as

$$\mathsf{G}_{\alpha_0,\alpha_1,\ldots,\alpha_{n-1}}(x) := x^e \cdot \mathsf{F}(\alpha_0 \cdot x, \alpha_1 \cdot x, \ldots, \alpha_{n-1} \cdot x)$$

is invertible for each arbitrary fixed non-null $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}_q^n \setminus \{(0, 0, \ldots, 0)\}.$

The Contracting-Amaryllises scheme \mathcal{A}_C over \mathbb{F}_q^n defined as $\mathcal{A}_C(x_0, x_1, \dots, x_{n-1}) = y_0 \|y_1\| \dots \|y_{n-1}$ where

$$\forall i \in \{0, 1, \dots, n-1\}: \quad y_i = x_i^e \cdot F(x_0, x_1, \dots, x_{n-1})$$

is invertible

Contracting-Amaryllises Schemes [Gra22]

Let $q = p^s$ as before, and let $n \ge 2$. Let

- 1. $e \ge 1$ be an integer such that gcd(e, q 1) = 1;
- 2. $F : \mathbb{F}_q^n \to \mathbb{F}_q \setminus \{0\}$ be a function that (i) never returns zero for any non-zero input (i.e., F(x) = 0 if only if $x = 0 \in \mathbb{F}_q^n$), and s.t. (ii) the function $G_{\alpha_0,\alpha_1,...,\alpha_{n-1}}(x) : \mathbb{F}_q \to \mathbb{F}_q$ defined as

$$\mathsf{G}_{\alpha_0,\alpha_1,\ldots,\alpha_{n-1}}(x) := x^e \cdot \mathsf{F}(\alpha_0 \cdot x, \alpha_1 \cdot x, \ldots, \alpha_{n-1} \cdot x)$$

is invertible for each arbitrary fixed non-null $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) \in \mathbb{F}_q^n \setminus \{(0, 0, \ldots, 0)\}.$

The Contracting-Amaryllises scheme \mathcal{A}_C over \mathbb{F}_q^n defined as $\mathcal{A}_C(x_0, x_1, \dots, x_{n-1}) = y_0 \|y_1\| \dots \|y_{n-1}$ where

$$\forall i \in \{0, 1, \dots, n-1\}: \qquad y_i = x_i^e \cdot F(x_0, x_1, \dots, x_{n-1})$$

is invertible.

Invertibility of Contracting-Amaryllises Schemes

Note:

1. $y_i = 0 \qquad \longleftrightarrow \qquad x_i = 0;$

2. since F never returns zero, then for each $i, j \in \{0, 1, \dots, n-1\}$:

$$y_i \cdot x_j^e = y_j \cdot x_i^e$$
.

Assume $y_i \neq 0$. Since $x \mapsto x^e$ is invertible, then

$$\begin{aligned} y_i &= \mathsf{x}_i^e \cdot \mathsf{F}\left(\left(\frac{y_0}{y_i}\right)^{\frac{1}{e}} \cdot \mathsf{x}_i, \dots, \left(\frac{y_{i-1}}{y_i}\right)^{\frac{1}{e}} \cdot \mathsf{x}_i, \mathsf{x}_i, \left(\frac{y_{i+1}}{y_i}\right)^{\frac{1}{e}} \cdot \mathsf{x}_i, \dots, \left(\frac{y_{n-1}}{y_i}\right)^{\frac{1}{e}} \cdot \mathsf{x}_i\right) \\ &\equiv \mathsf{G}_{\left(\frac{y_0}{y_i}\right)^{\frac{1}{e}}, \dots, \left(\frac{y_{i-1}}{y_i}\right)^{\frac{1}{e}}, 1, \left(\frac{y_{i+1}}{y_i}\right)^{\frac{1}{e}}, \dots, \left(\frac{y_{n-1}}{y_i}\right)^{\frac{1}{e}} \left(\mathsf{x}_i\right). \end{aligned}$$

By inverting G, it is possible to find x_i .

Invertibility of Contracting-Amaryllises Schemes

Note:

1. $y_i = 0 \qquad \longleftrightarrow \qquad x_i = 0;$

2. since F never returns zero, then for each $i, j \in \{0, 1, \dots, n-1\}$:

$$y_i \cdot x_j^e = y_j \cdot x_i^e$$
.

Assume $y_i \neq 0$. Since $x \mapsto x^e$ is invertible, then

$$\begin{split} y_{i} &= x_{i}^{e} \cdot \mathsf{F}\left(\left(\frac{y_{0}}{y_{i}}\right)^{\frac{1}{e}} \cdot x_{i}, \dots, \left(\frac{y_{i-1}}{y_{i}}\right)^{\frac{1}{e}} \cdot x_{i}, x_{i}, \left(\frac{y_{i+1}}{y_{i}}\right)^{\frac{1}{e}} \cdot x_{i}, \dots, \left(\frac{y_{n-1}}{y_{i}}\right)^{\frac{1}{e}} \cdot x_{i}\right) \\ &\equiv \mathsf{G}_{\left(\frac{y_{0}}{y_{i}}\right)^{\frac{1}{e}}, \dots, \left(\frac{y_{i-1}}{y_{i}}\right)^{\frac{1}{e}}, \dots, \left(\frac{y_{i+1}}{y_{i}}\right)^{\frac{1}{e}}, \dots, \left(\frac{y_{n-1}}{y_{i}}\right)^{\frac{1}{e}} \left(x_{i}\right). \end{split}$$

By inverting G, it is possible to find x_i .

Constructing $G_{\alpha_0,\alpha_1,...,\alpha_{n-1}}(x) : \mathbb{F}_q \to \mathbb{F}_q$

Let $d \ge 3$ be such that gcd(d, q-1) = 1. Let $F : \mathbb{F}_q^n \to \mathbb{F}_q$ be an **homogeneous function** of degree d - e (i.e., it contains only monomial of degree d - e) such that F(x) = 0 if only if $x = 0 \in \mathbb{F}_q^n$. Then:

$$\mathsf{G}_{\alpha_0,\alpha_1,\ldots,\alpha_{n-1}}(x) = x^e \cdot \mathsf{F}(\alpha_0 \cdot x, \alpha_1 \cdot x, \ldots, \alpha_{n-1} \cdot x)$$
$$= x^d \cdot \mathsf{F}(\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$$

is invertible (since $x \mapsto x^d$ is invertible, and $F(\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \neq 0$ by assumption).

(See [Gra22] for other concrete examples.)

From Feistel to Horst Schemes

2 Lai-Massey Schemes: Relation between Feistel and Generalizations

3 Amaryllises Schemes

4 Summary and Open Problems

Summary and Open Problems

New invertible non-linear layers for symmetric schemes!

Open Problems:

- 1. exploit the EA-equivalence (and/or the CCZ one?) between Feistel and Lai-Massey schemes for transferring known results;
- 2. analyze the *statistical and the algebraic cryptographic properties* of the proposed schemes:
 - ▶ an initial study proposed in [Gra22] and in [RS22];
 - what about the degree of regularity over multiple rounds?
- 3. analyze the *impact* on the design: is it possible to improve the performances of current schemes?
- 4. set up other invertible non-linear schemes.

References I

🔈 L. Grassi

On Generalizations of the Lai-Massey Scheme: the Blooming of Amaryllises. IACR Cryptol. ePrint Arch. 2022/1245

L. Grassi, Y. Hao, C. Rechberger, M. Schofnegger, R. Walch, Q. Wang Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Applications. CRYPTO 2023

🛸 A. Roy, M. J. Steiner

Generalized Triangular Dynamical System: An Algebraic System for Constructing Cryptographic Permutations over Finite Fields. Corr arXiv:2204.01802

Thanks for your attention!

Questions?

Comments?