OF LARGE-SCALE ADVERSARIES

Horst and Amaryllises: Possible Generalizations of the Feistel and of the Lai-Massey Schemes

ASK 2023, December 2023

Lorenzo Grassi
Ruhr-Universität Bochum, Germany

The majority of the symmetric schemes follows one of the two following design strategies:

- Substitution Permutation Network (SPN):

$$
\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto c+M \times\left(S\left(x_{0}\right), S\left(x_{1}\right), \ldots, S\left(x_{n-1}\right)\right)
$$

- Feistel schemes:

New applications such as Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK) require symmetric-key primitives that

- are naturally defined over \mathbb{F}_{p}^{n} for a large prime p (such as $p \approx 2^{128}$ or 2^{256})
- minimize their multiplicative complexity, i.e., the number of multiplications (= nonlinear operations) required to compute and/or verify them.

Questions:

1. Is it possible to set up new invertible non-linear layers over \mathbb{F}_{q}^{n} for $q=p^{s}$?
2. Is it possible to achieve better security argument and/or performances via them?

New applications such as Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK) require symmetric-key primitives that

- are naturally defined over \mathbb{F}_{p}^{n} for a large prime p (such as $p \approx 2^{128}$ or 2^{256})
- minimize their multiplicative complexity, i.e., the number of multiplications (= nonlinear operations) required to compute and/or verify them.

Questions:

1. Is it possible to set up new invertible non-linear layers over \mathbb{F}_{q}^{n} for $q=p^{s}$?
2. Is it possible to achieve better security argument and/or performances via them?
(1) From Feistel to Horst Schemes
(2) Lai-Massey Schemes: Relation between Feistel and Generalizations
(3) Amaryllises Schemes
(4) Summary and Open Problems
(1) From Feistel to Horst Schemes
(2) Lai-Massey Schemes: Relation between Feistel and Generalizations
(3) Amaryllises Schemes
(4) Summary and Open Problems

From Feistel to Horst Schemes

Feistel scheme \mathcal{F} over \mathbb{F}_{q}^{2} (where $q=p^{s}$ for $s \geq 1$ and a prime $p \geq 2$):

$$
\left(x_{0}, x_{1}\right) \mapsto\left(y_{0}, y_{1}\right)=\left(x_{1}, x_{0}+F\left(x_{1}\right)\right),
$$

where $F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$. Always invertible independently of $\mathrm{F}: x_{0}=y_{1}-\mathrm{F}\left(x_{1}\right)=y_{1}-\mathrm{F}\left(y_{0}\right)$.

Horst as a possible generalization:

where $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \backslash\{0\}$. Invertible as well

From Feistel to Horst Schemes

Feistel scheme \mathcal{F} over \mathbb{F}_{q}^{2} (where $q=p^{s}$ for $s \geq 1$ and a prime $p \geq 2$):

$$
\left(x_{0}, x_{1}\right) \mapsto\left(y_{0}, y_{1}\right)=\left(x_{1}, x_{0}+F\left(x_{1}\right)\right),
$$

where $F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$. Always invertible independently of $\mathrm{F}: x_{0}=y_{1}-\mathrm{F}\left(x_{1}\right)=y_{1}-\mathrm{F}\left(y_{0}\right)$.

Horst as a possible generalization:

$$
\left(x_{0}, x_{1}\right) \mapsto\left(y_{0}, y_{1}\right):=\left(x_{1}, x_{0} \cdot G\left(x_{1}\right)+F\left(x_{1}\right)\right),
$$

where $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \backslash\{0\}$. Invertible as well:

$$
\left(x_{0}, x_{1}\right)=\left(\frac{y_{1}-F\left(y_{0}\right)}{G\left(y_{0}\right)}, y_{0}\right) .
$$

Horst Schemes over $\mathbb{F}_{q}^{n}[G H R+23]$

The Horst scheme over \mathbb{F}_{q}^{n} :
$y_{i}:= \begin{cases}x_{i+1} \cdot \mathrm{G}^{(i+1)}\left(x_{i}, x_{i-1}, \ldots, x_{0}\right)+\mathrm{F}^{(i+1)}\left(x_{i}, x_{i-1}, \ldots, x_{0}\right) & \text { otherwise }(i \in\{0,1, \ldots, n-2\}), \\ x_{0} & \text { if } i=n-1,\end{cases}$
where $\mathrm{F}^{(j)}: \mathbb{F}_{q}^{j} \rightarrow \mathbb{F}_{q}$ and $\mathrm{G}(j): \mathbb{F}_{q}^{j} \rightarrow \mathbb{F}_{q} \backslash\{\mathbf{0}\}$.
Horst and Amaryllises: Possible Generalizations of the Feistel and of the Lai-Massey Schemes — ASK 2023 — December 2023

Constructing $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \backslash\{0\}(1 / 3)$

If q small (e.g., $q \approx 2^{8}$) and no particular condition on G : easy task! (E.g., brute force). Our Goal: construct low-degree G over any \mathbb{F}_{q}.

1st Example: Let $q=p \geq 3$ be a prime. Remember: $x \mapsto x^{2}$ is not invertible Define
such that $\alpha, \beta \in \mathbb{F}_{p}$ satisfies $\alpha^{2}-4 \cdot \beta \neq z^{2}$ for each $z \in \mathbb{F}_{p}$ Then, $\mathrm{G}(x)=0$ if and only if

[^0]Constructing $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \backslash\{0\}(1 / 3)$

If q small (e.g., $q \approx 2^{8}$) and no particular condition on G : easy task! (E.g., brute force). Our Goal: construct low-degree G over any \mathbb{F}_{q}.

1st Example: Let $q=p \geq 3$ be a prime. Remember: $x \mapsto x^{2}$ is not invertible. Define

$$
\mathrm{G}(x):=x^{2}+\alpha \cdot x+\beta
$$

such that $\alpha, \beta \in \mathbb{F}_{p}$ satisfies $\alpha^{2}-4 \cdot \beta \neq z^{2}$ for each $z \in \mathbb{F}_{p}$.
Then, $G(x)=0$ if and only if

$$
x=\left(-\alpha \pm \sqrt{\alpha^{2}-4 \cdot \beta}\right) / 2
$$

which do not exist!

Constructing $\mathrm{G}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \backslash\{0\}(2 / 3)$ of LaRGE-SCALE AdvERSARIES

Given a generic G over \mathbb{F}_{q} : very expensive to check if G returns zero or not!

Lemma 1

Let $\mathrm{G}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ be such that (i) $\mathrm{G}(0) \neq 0$ and (ii) $\mathrm{H}(x):=x \cdot \mathrm{G}(x)$ is a permutation. Then, $\mathrm{G}(x) \neq 0$ for each $x \in \mathbb{F}_{q}$.

Proof.

Obviously, $H(0)=0$. Since H is a permutation, then $H(x) \neq 0$ for each Hence:

Constructing $G: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \backslash\{0\}(2 / 3)$

Given a generic G over \mathbb{F}_{q} : very expensive to check if G returns zero or not!

Lemma 1

Let $\mathrm{G}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ be such that (i) $\mathrm{G}(0) \neq 0$ and (ii) $\mathrm{H}(x):=x \cdot \mathrm{G}(x)$ is a permutation. Then, $\mathrm{G}(x) \neq 0$ for each $x \in \mathbb{F}_{q}$.

Proof.

Obviously, $H(0)=0$. Since H is a permutation, then $H(x) \neq 0$ for each $x \in \mathbb{F}_{q} \backslash\{0\}$. Hence:

$$
\forall x \in \mathbb{F}_{q} \backslash\{0\}: \quad \mathrm{G}(x)=\frac{\mathrm{H}(x)}{x} \neq 0 .
$$

By assumption, $\mathrm{G}(0) \neq 0$. Hence, $\mathrm{G}(x) \neq 0$ for each x.

Constructing $\mathrm{G}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \backslash\{0\}(3 / 3)$

2nd Example: Let $x \mapsto x^{d}$ be a permutation over \mathbb{F}_{q}, and let $\alpha \in \mathbb{F}_{q} \backslash\{0\}$. The function

$$
\mathrm{G}(x):=\frac{(x+\alpha)^{d}-\alpha^{d}}{x}=\sum_{i=1}^{d}\binom{d}{i} \cdot \alpha^{i} \cdot x^{d-1-i}
$$

never returns zero (since $\mathrm{G}(0)=d \cdot \alpha \neq 0$ and $\mathrm{G}(x) \cdot x=(x+\alpha)^{d}-\alpha^{d}$ is invertible).
3rd Example: Over $\mathbb{F}_{2^{n}}$, let

for $\alpha_{0} \neq 0$. Choose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d} \in \mathbb{F}_{2^{n}}$ such that $\mathrm{G}(x) \cdot x=\sum_{i=0}^{d} \alpha_{i} \cdot x^{2^{\prime}}$ is invertible (note that $x \cdot G(x)$ is a linear map \rightarrow easy to check!). Then, G never returns zero

Constructing $\mathrm{G}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q} \backslash\{0\}(3 / 3)$

2nd Example: Let $x \mapsto x^{d}$ be a permutation over \mathbb{F}_{q}, and let $\alpha \in \mathbb{F}_{q} \backslash\{0\}$. The function

$$
\mathrm{G}(x):=\frac{(x+\alpha)^{d}-\alpha^{d}}{x}=\sum_{i=1}^{d}\binom{d}{i} \cdot \alpha^{i} \cdot x^{d-1-i}
$$

never returns zero (since $\mathrm{G}(0)=d \cdot \alpha \neq 0$ and $\mathrm{G}(x) \cdot x=(x+\alpha)^{d}-\alpha^{d}$ is invertible).

3rd Example: Over $\mathbb{F}_{2^{n}}$, let

$$
\mathrm{G}(x)=\sum_{i=0}^{d} \alpha_{i} \cdot x^{2^{i}-1}
$$

for $\alpha_{0} \neq 0$. Choose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d} \in \mathbb{F}_{2^{n}}$ such that $\mathrm{G}(x) \cdot x=\sum_{i=0}^{d} \alpha_{i} \cdot x^{2^{i}}$ is invertible (note that $x \cdot \mathrm{G}(x)$ is a linear map \rightarrow easy to check!). Then, G never returns zero.

Feistel versus Horst in Griffin [GHR+23] (1/2)

Non-linear layer $S\left(x_{0}, x_{1}, \ldots, x_{t-1}\right)=y_{0}\left\|y_{1}\right\| \ldots \| y_{t-1}$ over \mathbb{F}_{p}^{t} defined as

$$
y_{i}= \begin{cases}x_{0}{ }^{1 / d} & \text { if } i=0, \\ x_{1}{ }^{d} & \text { if } i=1, \\ x_{2} \cdot\left(\left(L_{i}\left(y_{0}, y_{1}, 0\right)\right)^{2}+\alpha_{2} \cdot L_{i}\left(y_{0}, y_{1}, 0\right)+\beta_{2}\right) & \text { if } i=2, \\ x_{i} \cdot\left(\left(L_{i}\left(y_{0}, y_{1}, x_{i-1}\right)\right)^{2}+\alpha_{i} \cdot L_{i}\left(y_{0}, y_{1}, x_{i-1}\right)+\beta_{i}\right) & \text { otherwise },\end{cases}
$$

where $\operatorname{gcd}(d, p-1)=1$ and $L_{i}: \mathbb{F}_{p}^{3} \rightarrow \mathbb{F}_{p}$ are linear functions.

Feistel versus Horst in Griffin [GHR+23] (2/2)

$x \mapsto x^{1 / d}$ is quite expensive \longrightarrow our goal: minimize the number of rounds!

GRIFFIN $^{\times}$instantiated with Horst allows stronger security argument against Gröbner basis attacks w.r.t. Griffin ${ }^{+}$instantiated with Feistel

- roughly speaking, cost of Gröbner basis attacks given by

where $D_{\text {reg }}=$ degree of regularity, and $n_{v}=$ number of variables;
\rightarrow GRIFFIN $^{+}: D_{\text {mom }}$ remains almost constant w.r.t. the number of rounds \rightarrow hard to estimate the minimum number for guaranteeing security!
\rightarrow GRIFFIN $^{\times}: D_{\text {reg }}$ growths with the number of rounds.
Horst and Amaryllises: Possible Generalizations of the Feistel and of the Lai-Massey Schemes — ASK 2023 - December 2023

Feistel versus Horst in Griffin [GHR+23] (2/2)

$x \mapsto x^{1 / d}$ is quite expensive \longrightarrow our goal: minimize the number of rounds!

Griffin $^{\times}$instantiated with Horst allows stronger security argument against Gröbner basis attacks w.r.t. GRIFFIN ${ }^{+}$instantiated with Feistel:
> roughly speaking, cost of Gröbner basis attacks given by

where $D_{\text {reg }}=$ degree of regularity, and $n_{V}=$ number of variables;

- GRIFAINT ${ }^{+}$. D remains almost constant wrt the number of rounds \rightarrow hard to estimate the minimum number for guaranteeing security!
\Rightarrow Griffin $^{\times}: D_{\text {rea }}$ growths with the number of rounds.

Feistel versus Horst in Griffin [GHR+23] (2/2)
$x \mapsto x^{1 / d}$ is quite expensive \longrightarrow our goal: minimize the number of rounds!

Griffin $^{\times}$instantiated with Horst allows stronger security argument against Gröbner basis attacks w.r.t. GRIFFIN ${ }^{+}$instantiated with Feistel:

- roughly speaking, cost of Gröbner basis attacks given by

$$
\mathcal{O}\left(\binom{D_{\mathrm{reg}}+n_{v}}{n_{v}}^{2}\right)
$$

where $D_{\text {reg }}=$ degree of regularity, and $n_{v}=$ number of variables;
\Rightarrow Griffin ${ }^{+}: D_{\text {reg }}$ remains almost constant w.r.t. the number of rounds \longrightarrow hard to estimate the minimum number for guaranteeing security!

- GRIFFIN ${ }^{\times}$: $D_{\text {reo }}$ growths with the number of rounds.

Feistel versus Horst in Griffin [GHR+23] (2/2)
$x \mapsto x^{1 / d}$ is quite expensive \longrightarrow our goal: minimize the number of rounds!

Griffin $^{\times}$instantiated with Horst allows stronger security argument against Gröbner basis attacks w.r.t. GRIffin ${ }^{+}$instantiated with Feistel:

- roughly speaking, cost of Gröbner basis attacks given by

$$
\mathcal{O}\left(\binom{D_{\mathrm{reg}}+n_{v}}{n_{v}}^{2}\right)
$$

where $D_{\text {reg }}=$ degree of regularity, and $n_{v}=$ number of variables;

- Griffin ${ }^{+}$: $D_{\text {reg }}$ remains almost constant w.r.t. the number of rounds \longrightarrow hard to estimate the minimum number for guaranteeing security!
- Griffin ${ }^{\times}$: $D_{\text {reg }}$ growths with the number of rounds.

Table of Contents

 of LaRGE-SCALE AdvERSARIES(1) From Feistel to Horst Schemes
(2) Lai-Massey Schemes: Relation between Feistel and Generalizations
(3) Amaryllises Schemes
(4) Summary and Open Problems

Lai-Massey Schemes over \mathbb{F}_{q}^{2}

Let $q=p^{s}$ be as before. Lai-Massey scheme $\mathcal{L} \mathcal{M}$ over \mathbb{F}_{q}^{2} :

$$
\left(x_{0}, x_{1}\right) \mapsto\left(y_{0}, y_{1}\right)=\left(\alpha \cdot\left(x_{0}+\mathrm{F}\left(x_{0}-x_{1}\right)\right), x_{1}+\mathrm{F}\left(x_{0}-x_{1}\right)\right),
$$

where $\mathrm{F}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $\alpha \neq 0 . \mathcal{L M}$ is invertible independently of the details of F :

$$
\left(x_{0}, x_{1}\right)=\left(y_{0}^{\prime}-F\left(y_{0}^{\prime}-y_{1}\right), y_{1}-F\left(y_{0}^{\prime}-y_{1}\right)\right),
$$

since $x_{0}-x_{1}=y_{0}^{\prime}-y_{1}$ where $y_{0}^{\prime}=y_{0} / \alpha$.
Remark: $\alpha \notin\{0,1\}$ crucial for destroying the invariant subspace $\langle[1,1]\rangle \subseteq \mathbb{F}_{q}^{2}$ ($\alpha=1$ fixed in the following for simplicity!)

Lai-Massey Schemes over \mathbb{F}_{q}^{2}

Let $q=p^{s}$ be as before. Lai-Massey scheme $\mathcal{L M}$ over \mathbb{F}_{q}^{2} :

$$
\left(x_{0}, x_{1}\right) \mapsto\left(y_{0}, y_{1}\right)=\left(\alpha \cdot\left(x_{0}+\mathrm{F}\left(x_{0}-x_{1}\right)\right), x_{1}+\mathrm{F}\left(x_{0}-x_{1}\right)\right),
$$

where $\mathrm{F}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ and $\alpha \neq 0 . \mathcal{L M}$ is invertible independently of the details of F :

$$
\left(x_{0}, x_{1}\right)=\left(y_{0}^{\prime}-F\left(y_{0}^{\prime}-y_{1}\right), y_{1}-F\left(y_{0}^{\prime}-y_{1}\right)\right),
$$

since $x_{0}-x_{1}=y_{0}^{\prime}-y_{1}$ where $y_{0}^{\prime}=y_{0} / \alpha$.
Remark: $\alpha \notin\{0,1\}$ crucial for destroying the invariant subspace $\langle[1,1]\rangle \subseteq \mathbb{F}_{q}^{2}$. ($\alpha=1$ fixed in the following for simplicity!)

Lai-Massey Schemes over \mathbb{F}_{q}^{n}

Let $n \geq 3$. For each $i \in\{0,1, \ldots, n-2\}$, let $\lambda_{0}^{(i)}, \lambda_{1}^{(i)}, \ldots, \lambda_{n-1}^{(i)} \in \mathbb{F}_{q}$ be such that

$$
\sum_{j=0}^{n-1} \lambda_{j}^{(i)}=0
$$

The Lai-Massey scheme over \mathbb{F}_{q}^{n} is defined as $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ where
where $\mathbb{F}: \mathbb{F}_{q}^{n-1} \rightarrow \mathbb{F}_{q}$. As before, invertibility follows from $\sum_{j=0}^{n-1} \lambda_{j}^{(i)} \cdot x_{j}=\sum_{j=0}^{n-1} \lambda_{j}^{(i)} \cdot y_{j}$

Let $n \geq 3$. For each $i \in\{0,1, \ldots, n-2\}$, let $\lambda_{0}^{(i)}, \lambda_{1}^{(i)}, \ldots, \lambda_{n-1}^{(i)} \in \mathbb{F}_{q}$ be such that

$$
\sum_{j=0}^{n-1} \lambda_{j}^{(i)}=0 .
$$

The Lai-Massey scheme over \mathbb{F}_{q}^{n} is defined as $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ where

$$
\forall i \in\{0,1, \ldots, n-1\}: \quad y_{i}:=x_{i}+F\left(\sum_{j=0}^{n-1} \lambda_{j}^{(0)} \cdot x_{j}, \sum_{j=0}^{n-1} \lambda_{j}^{(1)} \cdot x_{j}, \ldots, \sum_{j=0}^{n-1} \lambda_{j}^{(n-2)} \cdot x_{j}\right)
$$

where $\mathrm{F}: \mathbb{F}_{q}^{n-1} \rightarrow \mathbb{F}_{q}$. As before, invertibility follows from $\sum_{j=0}^{n-1} \lambda_{j}^{(i)} \cdot x_{j}=\sum_{j=0}^{n-1} \lambda_{j}^{(i)} \cdot y_{j}$.

Relation between Feistel and Lai-Massey Schemes

Theorem 2 ([Gra22])

A Lai-Massey scheme $\mathcal{L} \mathcal{M}$ over \mathbb{F}_{q}^{n} is extended Affine-Equivalent (AE) to a generalized Feistel scheme \mathcal{F} over \mathbb{F}_{q}^{n}, that is, there exists two affine permutation A, B and an affine function C over \mathbb{F}_{q}^{n} such that

$$
\forall x \in \mathbb{F}_{q}^{n}: \quad \mathcal{F}(x)=B \circ \mathcal{L} \mathcal{M} \circ A(x)+C(x) .
$$

Theorem 2 ([Gra22])

A Lai-Massey scheme $\mathcal{L} \mathcal{M}$ over \mathbb{F}_{q}^{n} is extended Affine-Equivalent (AE) to a generalized Feistel scheme \mathcal{F} over \mathbb{F}_{q}^{n}, that is, there exists two affine permutation A, B and an affine function C over \mathbb{F}_{q}^{n} such that

$$
\forall x \in \mathbb{F}_{q}^{n}: \quad \mathcal{F}(x)=B \circ \mathcal{L} \mathcal{M} \circ A(x)+C(x)
$$

For each $j \in\{1,2, \ldots, n-1\}$, let $\mathbb{F}^{(j)}: \mathbb{F}_{q}^{j} \rightarrow \mathbb{F}_{q}$. The generalized Feistel scheme over \mathbb{F}_{q}^{n} is defined as $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ where:

$$
y_{i}:= \begin{cases}x_{i+1}+\mathrm{F}^{(i+1)}\left(x_{i}, x_{i-1}, \ldots, x_{0}\right) & \text { otherwise }(i \in\{0,1, \ldots, n-2\}) \\ x_{0} & \text { if } i=n-1\end{cases}
$$

$\mathcal{L} \mathcal{M}$ over \mathbb{F}_{q}^{2} defined as $\left(x_{0}, x_{1}\right) \mapsto\left(x_{0}+\mathrm{F}\left(x_{0}-x_{1}\right), x_{1}+\mathrm{F}\left(x_{0}-x_{1}\right)\right)$ is affine-equivalent to $\left(x_{0}, x_{1}\right) \mapsto\left(x_{1}+F\left(x_{0}\right), x_{0}\right)$ via the invertible linear transformations

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right]
$$

and $C=0$. Indeed:

$$
\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right] \xrightarrow{A \times \cdot}\left[\begin{array}{c}
x_{0}-x_{1} \\
x_{1}
\end{array}\right] \xrightarrow{F(\cdot)}\left[\begin{array}{c}
x_{1}+F\left(x_{0}-x_{1}\right) \\
x_{0}-x_{1}
\end{array}\right] \xrightarrow{B \times \cdot}\left[\begin{array}{l}
x_{0}+F\left(x_{0}-x_{1}\right) \\
x_{1}+F\left(x_{0}-x_{1}\right)
\end{array}\right] .
$$

(See [Gra22] for the proof regarding the general case \mathbb{F}_{q}^{n}.)

Open Questions

- Is it possible to transfer the results published in the literature (including indistinguishability, indifferentiability, ...) for Feistel schemes to Lai-Massey schemes?
- Is it possible to generalize the Lai-Massey scheme such that the (extended) affine equivalence to Feistel schemes does not hold?

Generalized Lai-Massey Scheme

Definition 3 ([Gra22])

Let $n \geq 2$. For each $i \in\{0,1, \ldots, n-2\}$, let $\lambda_{0}^{(i)}, \lambda_{1}^{(i)}, \ldots, \lambda_{n-1}^{(i)} \in \mathbb{F}_{q}$ be s.t. $\sum_{l=0}^{t-1} \lambda_{l}^{(i)}=0$.
We say that the scheme $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto\left(y_{0}, y_{1}, \ldots, y_{n-1}\right):=\mathcal{L} \mathcal{M}^{G}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ where

$$
\forall i \in\{0,1, \ldots, n-1\}: \quad y_{i}:=x_{i}+F_{i}\left(z_{0}, z_{1}, \ldots, z_{n-2}\right)
$$

such that $F_{0}, F_{1}, \ldots, F_{n-1}: \mathbb{F}_{q}^{n-1} \rightarrow \mathbb{F}_{q}$ and

$$
\forall j \in\{0,1, \ldots, n-2\}: \quad z_{j}:=\sum_{l=0}^{n-1} \lambda_{l}^{(j)} x_{l}
$$

is a "Generalized Lai-Massey" scheme if it is invertible.

Generalized Lai-Massey Scheme: Example

Let $p \geq 3$. The generalized Lai-Massey scheme defined as

$$
\begin{aligned}
& y_{0}=x_{0}+F^{(1)}\left(x_{0}-x_{1}\right)+F^{(3)}\left(x_{0}-x_{1}, x_{1}-x_{2}, x_{2}-x_{3}\right) \\
& y_{1}=x_{1}+F^{(1)}\left(x_{0}-x_{1}\right)+F^{(3)}\left(x_{0}-x_{1}, x_{1}-x_{2}, x_{2}-x_{3}\right) \\
& y_{2}=x_{2}+F^{(2)}\left(x_{0}-x_{1}, x_{2}-x_{3}\right)+F^{(3)}\left(x_{0}-x_{1}, x_{1}-x_{2}, x_{2}-x_{3}\right) \\
& y_{3}=x_{3}+F^{(2)}\left(x_{0}-x_{1}, x_{2}-x_{3}\right)+F^{(3)}\left(x_{0}-x_{1}, x_{1}-x_{2}, x_{2}-x_{3}\right)
\end{aligned}
$$

for $\mathrm{F}^{(i)}: \mathbb{F}_{p}^{i} \rightarrow \mathbb{F}_{p}$ with $i \in\{1,2,3\}$ is

- invertible:

$$
\begin{aligned}
& x_{0}-x_{1}=y_{0}-y_{1} ; \quad x_{2}-x_{3}=y_{2}-y_{3} \\
& x_{1}-x_{2}=y_{1}-y_{2}-F^{(1)}\left(y_{0}-y_{1}\right)-F^{(2)}\left(y_{0}-y_{1}, y_{2}-y_{3}\right)
\end{aligned}
$$

- not extended affine equivalent to any Feistel scheme (see [Gra22] for the proof).

Redundant Lai-Massey Scheme

Definition 4 ([Gra22])

Let $n \geq 2$.
We say that the scheme $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto\left(y_{0}, y_{1}, \ldots, y_{n-1}\right):=\mathcal{L}^{R}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ where

$$
\forall i \in\{0,1, \ldots, n-1\}: \quad y_{i}:=x_{i}+\mathrm{F}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)
$$

such that $F: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ is a "Redundant Lai-Massey" scheme if it is invertible.

Let $p \geq 3$ be a prime integer. Let $\alpha \in \mathbb{F}_{p} \backslash\{0\}$ be such that $-2 \cdot \alpha \neq z^{2}$ for each $z \in \mathbb{F}_{p}$. Then,

$$
\left(x_{0}, x_{1}\right) \mapsto\left(y_{0}, y_{1}\right):=\left(x_{0}+z, x_{1}+z\right)
$$

where

$$
z:=\alpha \cdot\left(x_{0}-x_{1}\right)^{2} \cdot\left(x_{0}+x_{1}\right)
$$

is a redundant Lai-Massey scheme. Invertibility follows from
hence, $y_{0}+y_{1}=\left(x_{0}+x_{1}\right) \cdot\left(1+2 \alpha \cdot\left(y_{0}-y_{1}\right)^{2}\right)$, which implies

where $1+2 \alpha \cdot z^{2} \neq 0$ by assumption on α

Let $p \geq 3$ be a prime integer. Let $\alpha \in \mathbb{F}_{p} \backslash\{0\}$ be such that $-2 \cdot \alpha \neq z^{2}$ for each $z \in \mathbb{F}_{p}$. Then,

$$
\left(x_{0}, x_{1}\right) \mapsto\left(y_{0}, y_{1}\right):=\left(x_{0}+z, x_{1}+z\right)
$$

where

$$
z:=\alpha \cdot\left(x_{0}-x_{1}\right)^{2} \cdot\left(x_{0}+x_{1}\right)
$$

is a redundant Lai-Massey scheme. Invertibility follows from:

- $y_{0}-y_{1}=x_{0}-x_{1}$;
- hence, $y_{0}+y_{1}=\left(x_{0}+x_{1}\right) \cdot\left(1+2 \alpha \cdot\left(y_{0}-y_{1}\right)^{2}\right)$, which implies

$$
x_{0}+x_{1}=\frac{y_{0}+y_{1}}{1+2 \alpha \cdot\left(y_{0}-y_{1}\right)^{2}}
$$

where $1+2 \alpha \cdot z^{2} \neq 0$ by assumption on α.

It is not extended affine equivalent to any Feistel scheme over \mathbb{F}_{p}^{2}.
Roughly speaking, reason:

- Feistel $\mathcal{F}\left(x_{0}, x_{1}\right)=\left(x_{1}+F\left(x_{0}\right), x_{0}\right): F$ depends on one input only;
- redundant Lai-Massey $\mathcal{L} \mathcal{M}^{R}\left(x_{0}, x_{1}\right)=\left(x_{0}+G\left(x_{0}, x_{1}\right), x_{1}+\mathrm{G}\left(x_{0}, x_{1}\right)\right)$ just proposed:

$$
\mathrm{G}\left(x_{0}, x_{1}\right)=\alpha \cdot\left(x_{0}-x_{1}\right)^{2} \cdot\left(x_{0}+x_{1}\right)
$$

depends on two inputs.
(Note that $x_{0}-x_{1}$ and $x_{0}+x_{1}$ are linearly independent)

Table of Contents

(1) From Feistel to Horst Schemes
(2) Lai-Massey Schemes: Relation between Feistel and Generalizations
(3) Amaryllises Schemes
(4) Summary and Open Problems

Amaryllises Schemes [Gra22]

Let $q=p^{s}$ as before, and let $n \geq 2$. Let

1. $\mathrm{F}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ be a function s.t. (i) $\mathrm{F}(0) \neq 0$ and (ii) $\mathrm{G}(x):=x \cdot \mathrm{~F}(x)$ is invertible over \mathbb{F}_{q} (similar to before!);
2. $\mathrm{H}: \mathbb{F}_{q}^{n-1} \rightarrow \mathbb{F}_{q}$ be any function;
3. $\beta_{0}, \beta_{1}, \ldots, \beta_{n-1} \in \mathbb{F}_{q} \backslash\{0\}$ s.t. $\sum_{i=0}^{n-1} \beta_{i}=0$ if H is not identically equal to zero ;
4. $\forall j \in\{0,1, \ldots, n-2\}$, let $\left\{\gamma_{i}^{(j)}\right\}_{i \in\{0,1, \ldots, n-1\}}$ be s.t. $\gamma_{i}^{(j)} \in \mathbb{F}_{q}$ and $\sum_{i=0}^{n-1} \gamma_{i}^{(j)}=0$.

The Amaryllises scheme \mathcal{A} over \mathbb{F}_{q}^{n} defined as $\mathcal{A}\left(x_{0}, x_{1}\right.$

 where

Amaryllises Schemes [Gra22]

Let $q=p^{s}$ as before, and let $n \geq 2$. Let

1. $\mathrm{F}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ be a function s.t. (i) $\mathrm{F}(0) \neq 0$ and (ii) $\mathrm{G}(x):=x \cdot \mathrm{~F}(x)$ is invertible over \mathbb{F}_{q} (similar to before!);
2. $\mathrm{H}: \mathbb{F}_{q}^{n-1} \rightarrow \mathbb{F}_{q}$ be any function;
3. $\beta_{0}, \beta_{1}, \ldots, \beta_{n-1} \in \mathbb{F}_{q} \backslash\{0\}$ s.t. $\sum_{i=0}^{n-1} \beta_{i}=0$ if H is not identically equal to zero ;
4. $\forall j \in\{0,1, \ldots, n-2\}$, let $\left\{\gamma_{i}^{(j)}\right\}_{i \in\{0,1, \ldots, n-1\}}$ be s.t. $\gamma_{i}^{(j)} \in \mathbb{F}_{q}$ and $\sum_{i=0}^{n-1} \gamma_{i}^{(j)}=0$.

The Amaryllises scheme \mathcal{A} over \mathbb{F}_{q}^{n} defined as $\mathcal{A}\left(x_{0}, x_{1}, \ldots, x_{t-1}\right):=y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1}$ where

$$
y_{i}=x_{i} \cdot \mathrm{~F}\left(\sum_{j=0}^{n-1} \beta_{j} \cdot x_{j}\right)+\mathrm{H}\left(\sum_{j=0}^{n-1} \gamma_{j}^{(0)} \cdot x_{j}, \ldots, \sum_{j=0}^{n-1} \gamma_{j}^{(n-2)} \cdot x_{j}\right)
$$

for each $i \in\{0,1, \ldots, n-1\}$ is invertible.

Invertibility follows from:
\rightarrow recover $\sum_{i=0}^{n-1} \beta_{i} \cdot x_{i}$ by exploiting (1) and (3):

$$
\begin{aligned}
\sum_{i=0}^{n-1} \beta_{i} \cdot y_{i} & =\left(\sum_{i=0}^{n-1} \beta_{i} \cdot x_{i}\right) \cdot \mathrm{F}\left(\sum_{i=0}^{n-1} \beta_{i} \cdot x_{i}\right)+\mathrm{H}\left(\sum_{i=0}^{n-1} \gamma_{i}^{(0)} \cdot x_{i}, \ldots, \sum_{i=0}^{n-1} \gamma_{i}^{(n-1)} \cdot x_{i}\right) \cdot \underbrace{\sum_{i=0}^{n-1} \beta_{i}}_{=0} \\
& =\mathrm{G}\left(\sum_{i=0}^{n-1} \beta_{i} \cdot x_{i}\right) \quad \longrightarrow \quad \sum_{i=0}^{n-1} \beta_{i} \cdot x_{i}=\mathrm{G}^{-1}\left(\sum_{i=0}^{n-1} \beta_{i} \cdot y_{i}\right)
\end{aligned}
$$

- given $\sum_{i=0}^{n-1} \beta_{i} \cdot x_{i}$ and since $F(z) \neq 0$ for each $z \in \mathbb{F}_{q}$, recover $\sum_{j=0}^{n-1} \gamma_{j}^{(i)} \cdot x_{j}$ as in a standard Lai-Massey scheme.

Contracting-Amaryllises Schemes [Gra22]

Let $q=p^{s}$ as before, and let $n \geq 2$. Let

1. $e \geq 1$ be an integer such that $\operatorname{gcd}(e, q-1)=1$;
2. $F: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q} \backslash\{0\}$ be a function that (i) never returns zero for any non-zero input (i.e., $\mathrm{F}(x)=0$ if only if $x=0 \in \mathbb{F}_{q}^{n}$), and s.t. (ii) the function $\mathrm{G}_{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}}(x): \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ defined as

$$
\mathrm{G}_{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}}(x):=x^{e} \cdot \mathrm{~F}\left(\alpha_{0} \cdot x, \alpha_{1} \cdot x, \ldots, \alpha_{n-1} \cdot x\right)
$$

is invertible for each arbitrary fixed non-null $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{F}_{q}^{n} \backslash\{(0,0, \ldots, 0)\}$.
The Contracting-Amaryllises scheme \mathcal{A}_{C} over \mathbb{F}_{q}^{n} defined as $\mathcal{A}_{C}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=$ $y_{0}\left\|y_{1}\right\| \ldots y_{n-1}$ where

Contracting-Amaryllises Schemes [Gra22]

Let $q=p^{s}$ as before, and let $n \geq 2$. Let

1. $e \geq 1$ be an integer such that $\operatorname{gcd}(e, q-1)=1$;
2. $\mathrm{F}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q} \backslash\{0\}$ be a function that (i) never returns zero for any non-zero input (i.e., $\mathrm{F}(x)=0$ if only if $x=0 \in \mathbb{F}_{q}^{n}$), and s.t. (ii) the function $\mathrm{G}_{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}}(x): \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ defined as

$$
\mathrm{G}_{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}}(x):=x^{e} \cdot \mathrm{~F}\left(\alpha_{0} \cdot x, \alpha_{1} \cdot x, \ldots, \alpha_{n-1} \cdot x\right)
$$

is invertible for each arbitrary fixed non-null $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{F}_{q}^{n} \backslash\{(0,0, \ldots, 0)\}$.

The Contracting-Amaryllises scheme $\mathcal{A}_{\mathcal{C}}$ over \mathbb{F}_{q}^{n} defined as $\mathcal{A}_{C}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=$ $y_{0}\left\|y_{1}\right\| \ldots \| y_{n-1}$ where

$$
\forall i \in\{0,1, \ldots, n-1\}: \quad y_{i}=x_{i}^{e} \cdot \mathrm{~F}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)
$$

is invertible.

Invertibility of Contracting-Amaryllises Schemes of LaRge-Scale Adversaries

Note:

1. $y_{i}=0 \quad \longleftrightarrow \quad x_{i}=0$;
2. since F never returns zero, then for each $i, j \in\{0,1, \ldots, n-1\}$:

$$
y_{i} \cdot x_{j}^{e}=y_{j} \cdot x_{i}^{e} .
$$

Assume $y_{i} \neq 0$. Since $x \mapsto x^{e}$ is invertible, then

[^1]Invertibility of Contracting-Amaryllises Schemes

Note:

1. $y_{i}=0 \quad \longleftrightarrow \quad x_{i}=0$;
2. since F never returns zero, then for each $i, j \in\{0,1, \ldots, n-1\}$:

$$
y_{i} \cdot x_{j}^{e}=y_{j} \cdot x_{i}^{e} .
$$

Assume $y_{i} \neq 0$. Since $x \mapsto x^{e}$ is invertible, then

$$
\begin{aligned}
y_{i} & =x_{i}^{e} \cdot \mathrm{~F}\left(\left(\frac{y_{0}}{y_{i}}\right)^{\frac{1}{e}} \cdot x_{i}, \ldots,\left(\frac{y_{i-1}}{y_{i}}\right)^{\frac{1}{e}} \cdot x_{i}, x_{i},\left(\frac{y_{i+1}}{y_{i}}\right)^{\frac{1}{e}} \cdot x_{i}, \ldots,\left(\frac{y_{n-1}}{y_{i}}\right)^{\frac{1}{e}} \cdot x_{i}\right) \\
& \equiv \mathrm{G}\left(\frac{y_{0}}{y_{i}}\right)^{\frac{1}{e}}, \ldots,\left(\frac{y_{i-1}}{y_{i}}\right)^{\frac{1}{e}}, 1,\left(\frac{y_{i+1}}{y_{i}}\right)^{\frac{1}{e}}, \ldots,\left(\frac{y_{n-1}}{y_{i}}\right)^{\frac{1}{e}\left(x_{i}\right) .}
\end{aligned}
$$

By inverting G, it is possible to find x_{i}.

Constructing $\mathrm{G}_{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}}(x): \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$

Let $d \geq 3$ be such that $\operatorname{gcd}(d, q-1)=1$. Let $F: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ be an homogeneous function of degree $d-e$ (i.e., it contains only monomial of degree $d-e$) such that $\mathrm{F}(x)=0$ if only if $x=0 \in \mathbb{F}_{q}^{n}$. Then:

$$
\begin{aligned}
\mathrm{G}_{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}}(x) & =x^{e} \cdot \mathrm{~F}\left(\alpha_{0} \cdot x, \alpha_{1} \cdot x, \ldots, \alpha_{n-1} \cdot x\right) \\
& =x^{d} \cdot \mathrm{~F}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right)
\end{aligned}
$$

is invertible (since $x \mapsto x^{d}$ is invertible, and $\mathrm{F}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right) \neq 0$ by assumption).
(See [Gra22] for other concrete examples.)

Table of Contents

(1) From Feistel to Horst Schemes
(2) Lai-Massey Schemes: Relation between Feistel and Generalizations
(3) Amaryllises Schemes
(4) Summary and Open Problems

Summary and Open Problems

New invertible non-linear layers for symmetric schemes!
Open Problems:

1. exploit the EA-equivalence (and/or the CCZ one?) between Feistel and Lai-Massey schemes for transferring known results;
2. analyze the statistical and the algebraic cryptographic properties of the proposed schemes:

- an initial study proposed in [Gra22] and in [RS22];
- what about the degree of regularity over multiple rounds?

3. analyze the impact on the design: is it possible to improve the performances of current schemes?
4. set up other invertible non-linear schemes.
\& L. Grassi
On Generalizations of the Lai-Massey Scheme: the Blooming of Amaryllises.
IACR Cryptol. ePrint Arch. 2022/1245
\& L. Grassi, Y. Hao, C. Rechberger, M. Schofnegger, R. Walch, Q. Wang Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Applications. CRYPTO 2023
\& A. Roy, M. J. Steiner
Generalized Triangular Dynamical System: An Algebraic System for Constructing Cryptographic Permutations over Finite Fields.
Corr arXiv:2204.01802

Thanks for your attention!

Questions?

Comments?

[^0]: which do not exist!

[^1]: By inverting G, it is possible to find x_{i}.

