

Masking Symmetric Crypto in a Low Noise Environment

Analysis and Evaluation

Loïc Masure

ASK Workshop, Guangzhou, December 1^{st}

Masking Symmetric Crypto in a Low Noise Environment

Content

Introduction: SCA & Masking

- The Effect of Masking
 - Observations
 - Analysis
- Masking in Prime Fields

On the Field Size

Conclusion

Joint Work

Joint work with

- Thorben Moos, FX Standaert, Gaëtan Cassiers, Charles Momin, Pierrick Méaux (UCLouvain)
- · Maximilian Orlt, Elena Micheli, Sebastian Faust (TU Darmstadt)
- Julien Béguinot, Wei Cheng, Sylvain Guilley, Yi Liu, Olivier Rioul (Télécom Paris)

Context : Side-Channel Analysis (SCA)

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper,

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices" Msg

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices" Msg

Trace : power, EM, acoustics, runtime, ...

Loïc Masure

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices" Msg

: N bits

Black-box cryptanalysis: 2^N Side-Channel Analysis: $2^n \cdot \frac{N}{n}$, $n \ll N$

Trace : power, EM, acoustics, runtime, ...

Ctx

Trace(Msg, •--)

Masking: what is that ?

Masking, aka MPC on silicon: linear secret sharing over a finite field $(\mathbb{F}, \star, \cdot)$ Y(secret)

Introduced by Chari et al., Goubin & Patarin (Crypto, Ches 99)

Masking: what is that ?

Masking, aka *MPC* on silicon: linear secret sharing over a finite field $(\mathbb{F}, \star, \cdot)$ Y(secret)

Y₁ Υı Y_d

Introduced by Chari *et al.*, Goubin & Patarin (Crypto, Ches 99)

Masking: what is that ?

Introduced by Chari et al., Goubin & Patarin (Crypto, Ches 99)

Loïc Masure

Masking Symmetric Crypto in a Low Noise Environment

Write each operation as a polynomial (Lagrange interpolation). One polynomial is made of:

· \mathbb{F} -affine functions (*e.g.*, \oplus): $f(\sum_i Y_i) = \sum_i f(Y_i)$;

- · \mathbb{F} -affine functions (*e.g.*, \oplus): $f(\sum_i \mathbf{Y}_i) = \sum_i f(\mathbf{Y}_i)$;
- \rightarrow Trivial transformation

- · \mathbb{F} -affine functions (*e.g.*, \oplus): $f(\sum_i \mathbf{Y}_i) = \sum_i f(\mathbf{Y}_i)$;
- \rightarrow Trivial transformation
- · \mathbb{F} -bilinear (*e.g.* \otimes) mappings: $f(\sum_i A_i, \sum_j B_j) = \sum_i \sum_j f(A_i, B_j)$.

- · \mathbb{F} -affine functions (*e.g.*, \oplus): $f(\sum_i \mathbf{Y}_i) = \sum_i f(\mathbf{Y}_i)$;
- \rightarrow Trivial transformation
- · \mathbb{F} -bilinear (*e.g.* \otimes) mappings: $f(\sum_i A_i, \sum_j B_j) = \sum_i \sum_j f(A_i, B_j)$.
- \rightarrow Spans d^2 shares ; needs to *compress* into *d* shares.
- \rightarrow Introduce *fresh* randomness somewhere.

Write each operation as a polynomial (Lagrange interpolation). One polynomial is made of:

- · \mathbb{F} -affine functions (*e.g.*, \oplus): $f(\sum_i \mathbf{Y}_i) = \sum_i f(\mathbf{Y}_i)$;
- \rightarrow Trivial transformation
- · \mathbb{F} -bilinear (*e.g.* \otimes) mappings: $f(\sum_i A_i, \sum_j B_j) = \sum_i \sum_j f(A_i, B_j)$.
- \rightarrow Spans d^2 shares ; needs to *compress* into *d* shares.
- \rightarrow Introduce *fresh* randomness somewhere.

In this talk we only focus on the leakage of one d-sharing only

Loïc Masure

Content

Introduction: SCA & Masking

The Effect of Masking

Observations

Analysis

Masking in Prime Fields

On the Field Size

Conclusion

Simulation, for \mathbb{F}_{2^n} : $L(Y_i) = lsb(Y_i) + \mathcal{N}(0; \sigma^2)$, lsb = Least Sig. Bit

Observation: "Masking amplifies noise" Constant gap between each curve (log scale) ⇐⇒ exponential security w.r.t. #shares d

Does masking always work in a low-noise setting ?

Observation:

Secret always leaks > 1 bit, regardless of *d* **Explanation:** $lsb(Y_1 \oplus ... \oplus Y_d) = lsb(Y_1) \oplus ... \oplus lsb(Y_d)$

Does masking always work in a low-noise setting ?

Observation:

Secret always leaks > 1 bit, regardless of dExplanation:

hw $(Y_1 \oplus \ldots \oplus Y_d) = \sum_i hw(Y_i) - 2 \cdot (\ldots)$ Parity of hw(Y): **cosets of** \mathbb{F}_{2^n} **Corollary**: parallelism is no cure either

Why these Observations?

Y(secret)

Does masking always work in a low-noise setting ?

Does masking always work in a low-noise setting ?

Does masking always work in a low-noise setting ?

Conditions for Sound Masking

What conditions the distributions ______ of each share must fit?

¹Stromberg, "Probabilities on a Compact Group".

²Béguinot et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings": Mziembowski, Faust, Mando Skónskiric "Optimal Amplification of tNoisy Leakages".

Conditions for Sound Masking

What conditions the distributions ______ of each share must fit?

"Central Limit Theorem" (qualitative)¹

Conv. to uniform \iff support *not* contained in any non-trivial coset of $\mathbb F$

¹Stromberg, "Probabilities on a Compact Group".

²Béguinot et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings"; Dziembowski, Faust, and Skórski, "Optimal Amplification of Noisy Leakages".

³D: Klic divergence, total variationing Euclidean April a Low Noise Environment
Conditions for Sound Masking

What conditions the distributions ______ of each share must fit?

"Central Limit Theorem" (qualitative)¹

Conv. to uniform \iff support not contained in any non-trivial coset of $\mathbb F$

"CENTRAL LIMIT THEOREM" (QUANTITATIVE)²

Assume the p.m.f.s of each share to be δ -close³ to the uniform:

$$D\left(\fbox{} \delta < 1
ight) \leq \delta < 1
ight)$$

then the p.m.f. of the secret is $\mathcal{O}\left(\delta^{d}\right)\text{-close}$ to the uniform.

¹Stromberg, "Probabilities on a Compact Group".

²Béguinot et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings"; Dziembowski, Faust, and Skórski, "Optimal Amplification of Noisy Leakages".

³D: Klic divergence, total variationing Euclidean April a Low Noise Environment

Two Solutions

Two Solutions

Solution 1: Make sure to leak < 1 bit per share:

- \cdot Support of PMF always larger than any coset
- \cdot Work with any $\mathbb F$ (usually chosen to fit the cipher) \checkmark
- Leakage-dependent: not always verified X

Two Solutions

Solution 2: Choose \mathbb{F} without any non-trivial subgroup, *i.e.*, \mathbb{F}_p , *p* prime:

- \cdot No assumption on the leakage 🗸
- · Major change of paradigm:

Fix \mathbb{F} masking-friendly first,

Then build crypto upon it 🗸

title

Figure: Comparing binary and prime fields.

Content

Introduction: SCA & Masking

- The Effect of Masking
 - Observations
 - Analysis

Masking in Prime Fields

On the Field Size

Conclusion

How to leverage?

Q: How can we make use of masking in \mathbb{F}_p to effectively and efficiently protect crypto implementations?

A: Ideally, we need algorithms that work in implementation-friendly prime fields, such as **small-Mersenne-prime fields** (\mathbb{F}_{2^n-1}), and use only simple field arithmetic $(+, -, \cdot)$

Complex in Software? Not really!

Field Addition in \mathbb{F}_{2^n-1} in C/C++ and ARM Assembly (c = a + b mod p)

с	=	= a+b; ADD r0,r0,r1		
			UBFX r1,r0,#0,#n	
с	=	(c & p) + (c >> n);	ADD r0,r1,r0,ASR #	n

Field Multiplication in \mathbb{F}_{2^n-1} in C/C++ and ARM Assembly (c = a · b mod p)

с	=	a*b; MUL r0,r1,r0	
		UBFX r1,r0,#0	,#n
с	=	(c & p) + (c >> n); ADD r0,r1,r0,	ASR #n
		UBFX r1,r0,#0	,#n
с	=	(c & p) + (c >> n); ADD r0,r1,r0,	ASR #n

ightarrow Only works for sufficiently small integers (< 16 bit for multiplication operands on ARM Cortex-M3)

 $\rightarrow~$ If c < p is strictly needed for the addition result, then c $\stackrel{?}{=} p$ needs to be checked after reduction

Masking Symmetric Crypto in a Low Noise Environment

Software Case Study: Masked S-box

Naive implementation of masked $x^5 + 2$ using 3 consecutive ISW multiplications:

Masking Symmetric Crypto in a Low Noise Environment

Dealing with Non-Linearity

In \mathbb{F}_p , every \mathbb{F}_2 -linear mapping, *e.g.* \cdot^2 , becomes non-linear \nearrow Ches 2023: new gadgets more efficient than multiplication gadgets⁴

- In $\mathbb{F}_{2^n-1}, 2 \cdot x$: cyclic shift of the bits
 - Almost free in hardware
 - Interesting property for later \ldots

⁴Cassiers et al., "Prime-Field Masking in Hardware and its Soundness against Low-Noise SCA Attacks". Loïc Masure Masking Symmetric Crypto in a Low Noise Environment

Masked $x^5 + 2$ (naive) in Software, Log/Alog tables

Software, Horizontal SASCA Attack for 2-6 Shares

Masking Symmetric Crypto in a Low Noise Environment

Software, Horizontal SASCA Attack for 2-6 Shares

Content

Introduction: SCA & Masking

- The Effect of Masking
 - Observations
 - Analysis
- Masking in Prime Fields

On the Field Size

Conclusion

What we know so far about a masking friendly finite field:

What we know so far about a masking friendly finite field:

· Prime characteristic, for leakage resilience

What we know so far about a masking friendly finite field:

- · Prime characteristic, for leakage resilience
- · Size of a Mersenne number $2^n 1$ for implementation efficiency
- \rightarrow Largest encoding within *n* bits
- \rightarrow Nice implementation for modulo reductions, for $\times 2,\,\ldots$

What we know so far about a masking friendly finite field:

- · Prime characteristic, for leakage resilience
- · Size of a Mersenne number $2^n 1$ for implementation efficiency
- \rightarrow Largest encoding within *n* bits
- \rightarrow Nice implementation for modulo reductions, for $\times 2,\,\ldots$
- · What about the size of Mersenne prime p?

What is the Effect of Field Size ?

LSB = Least Significant Bit. One bit leaked on every share.

Figure: MI vs. σ^2 , for LSB.

Observation: no effect of the field size X

Loïc Masure

What is the Effect of Field Size ?

HW = Hamming Weight. $\approx \log(n)$ bits leaked on every share.

Figure: MI vs. σ^2 , for HW.

Observation: increasing the field size helps resilience \checkmark

Loïc Masure

Masking Symmetric Crypto in a Low Noise Environment

"CENTRAL LIMIT THEOREM" (QUANTITATIVE)⁵

If each share is δ -leaky, for $\delta < 1$, then the secret is $\mathcal{O}\left(\delta^{d}\right)$ -leaky.

First Intuition: "the leakier the shares, the leakier the masked secret"

⁵Béguinot et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings"; Dziembowski, Faust, and Skórski, "Optimal Amplification of Noisy Leakages".

"Central Limit Theorem" (quantitative)⁵

If each share is δ -leaky, for $\delta < 1$, then the secret is $\mathcal{O}\left(\delta^{d}\right)$ -leaky.

First Intuition: "the leakier the shares, the leakier the masked secret" **Counter-example**: HW leaks more than LSB on each share . . .

⁵Béguinot et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings"; Dziembowski, Faust, and Skórski, "Optimal Amplification of Noisy Leakages".

"Central Limit Theorem" (quantitative) 5

If each share is δ -leaky, for $\delta < 1$, then the secret is $\mathcal{O}\left(\delta^{d}\right)$ -leaky.

First Intuition: "the leakier the shares, the leakier the masked secret" **Counter-example**: HW leaks more than LSB on each share . . . but less on the secret !

⁵Béguinot et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings"; Dziembowski, Faust, and Skórski, "Optimal Amplification of Noisy Leakages".

"Central Limit Theorem" (quantitative) 5

If each share is δ -leaky, for $\delta < 1$, then the secret is $\mathcal{O}\left(\delta^{d}\right)$ -leaky.

First Intuition: "the leakier the shares, the leakier the masked secret" **Counter-example**: HW leaks more than LSB on each share . . . but less on the secret !

Why?

⁵Béguinot et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings"; Dziembowski, Faust, and Skórski, "Optimal Amplification of Noisy Leakages".

Masking Symmetric Crypto in a Low Noise Environment

Masking \equiv Convolution

Masking \equiv Convolution \equiv Fourier Analysis

"The leakage-resilience can be read in the maximum amplitude of the Fourier spectrum"

Fourier Analysis for LSB

Related works⁶ and ours show secret to be $\Theta\left(\left(\frac{2}{\pi}\right)^d\right)$ -leaky **Independent of** p !

⁶Benhamouda et al., "On the Local Leakage Resilience of Linear Secret Sharing Schemes". Loïc Masure Masking Symmetric Crypto in a Low Noise Environment

Fourier Analysis for HW

At first glance, messier spectrum than for LSB — *i.e.* harder to analyze ...

Figure: Fourier spectrum (1st half) of $\mathbf{1}_{hw^{-1}(n/2)}$ and for $n = 17, p = 2^n - 1$.

Fourier Analysis for HW

More regular patterns in log scale

Figure: Fourier spectrum (1st half) of $\mathbf{1}_{hw^{-1}(n/2)}$ and for $n = 17, p = 2^n - 1$.

Remember that in \mathbb{F}_{2^n-1} , $\cdot 2$ is a cyclic shift of the bits

Remember that in \mathbb{F}_{2^n-1} , $\cdot 2$ is a cyclic shift of the bits: keeps hw unchanged

Remember that in \mathbb{F}_{2^n-1} , $\cdot 2$ is a cyclic shift of the bits: keeps hw unchanged As a result: for all $\alpha \neq 0$ and for all k,

$$\left|\widehat{\mathbf{1}_{h}}\left(2^{k}\alpha\right)\right| = \left|\widehat{\mathbf{1}_{h}}(\alpha)\right|$$
 .

Remember that in \mathbb{F}_{2^n-1} , $\cdot 2$ is a cyclic shift of the bits: keeps hw unchanged As a result: for all $\alpha \neq 0$ and for all k,

$$\left|\widehat{\mathbf{1}_{h}}\left(2^{k}\alpha\right)\right|=\left|\widehat{\mathbf{1}_{h}}(\alpha)\right|$$

Corollary: the secret is $\mathcal{O}\left(n^{1-\frac{d}{4}}\right)$ -leaky \implies larger field size help !

Remember that in \mathbb{F}_{2^n-1} , $\cdot 2$ is a cyclic shift of the bits: keeps hw unchanged As a result: for all $\alpha \neq 0$ and for all k,

$$\left|\widehat{\mathbf{1}_{h}}\left(2^{k}\alpha\right)\right|=\left|\widehat{\mathbf{1}_{h}}(\alpha)\right|$$

Corollary: the secret is $\mathcal{O}\left(n^{1-\frac{d}{4}}\right)$ -leaky \implies larger field size help !

Figure: Even tighter empirically

Masking Symmetric Crypto in a Low Noise Environment

Content

Introduction: SCA & Masking

- The Effect of Masking
 - Observations
 - Analysis
- Masking in Prime Fields

On the Field Size

Conclusion

Conclusion

Working over binary fields: prone to attacks in low-noise Working over prime fields: more leakage resilient

- \rightarrow Mersenne primes: good for implementation and for analysis
- ightarrow Field size acts as a surrogate of noise $\mathcal{O}\left((\sigma^2)^d
 ight) \implies \mathcal{O}\left(f(n)^d
 ight)$

Let's build symmetric crypto over middle-size prime fields !
References I

 Béguinot, J. et al. "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings". In: Constructive Side-Channel Analysis and Secure Design - 14th International Workshop, COSADE 2023, Munich, Germany, April 3-4, 2023, Proceedings. Ed. by E. B. Kavun and M. Pehl. Vol. 13979. Lecture Notes in Computer Science. Springer, 2023, pp. 86–104. DOI: 10.1007/978-3-031-29497-6_5. URL: https://doi.org/10.1007/978-3-031-29497-6_5.

References II

- Benhamouda, F. et al. "On the Local Leakage Resilience of Linear Secret Sharing Schemes". In: Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I. Ed. by H. Shacham and A. Boldyreva. Vol. 10991. Lecture Notes in Computer Science. Springer, 2018, pp. 531–561. DOI: 10.1007/978-3-319-96884-1\ 18. URL: https://doi.org/10.1007/978-3-319-96884-1\ 18. Cassiers, G. et al. "Prime-Field Masking in Hardware and its Soundness against Low-Noise SCA Attacks". In: IACR Trans. Cryptogr. Hardw.
 - *Embed. Syst.* 2023.2 (2023), pp. 482–518. DOI:
 - 10.46586/TCHES.V2023.I2.482-518. URL:
 - https://doi.org/10.46586/tches.v2023.i2.482-518.

References III

- Dziembowski, S., S. Faust, and M. Skórski. "Optimal Amplification of Noisy Leakages". In: Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II. Ed. by E. Kushilevitz and T. Malkin. Vol. 9563. Lecture Notes in Computer Science. Springer, 2016, pp. 291–318. DOI: 10.1007/978-3-662-49099-0_11. URL: https://doi.org/10.1007/978-3-662-49099-0_11.
- Stromberg, K. "Probabilities on a Compact Group". In: Transactions of the American Mathematical Society 94.2 (1960), pp. 295–309. ISSN: 00029947. URL: http://www.jstor.org/stable/1993313.