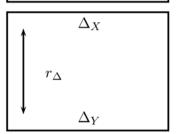


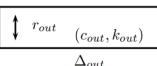
Differential Meet-in-the-Middle **Cryptanalyis**

Christina Boura¹, Nicolas David², **Patrick Derbez**³, Gregor Leander⁴, and María Nava-Plasencia²

¹ Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles ³ Univ Rennes, Inria, CNRS, IRISA ⁴ Ruhr University Bochum

Question

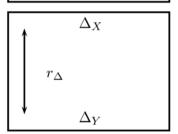

Can we use meet-in-the-middle related techniques to improve differential attacks?

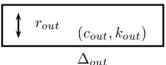

Differential Attack

top
$$P[\Delta_{in} \to \Delta_X] = 2^{-c_{in}}$$

middle $P[\Delta_X \to \Delta_Y] = 2^{-p}$
bottom $P[\Delta_{out} \to \Delta_Y] = 2^{-c_{out}}$

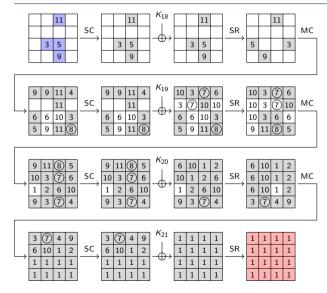
Main idea


Given $\alpha 2^{c_{in}}2^{p}$ pairs with difference Δ_{in} , we expect on average α pairs following the differential in the middle rounds and thus the **right value** for $k_{in} \cup k_{out}$ should appear α times.


Differential Attack

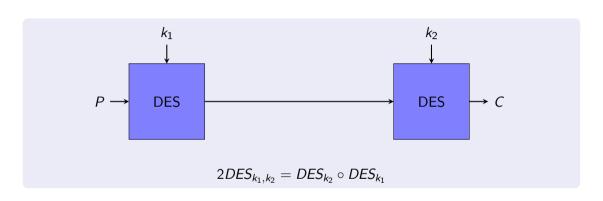
top
$$P[\Delta_{in} \to \Delta_X] = 2^{-c_{in}}$$

middle $P[\Delta_X \to \Delta_Y] = 2^{-p}$
bottom $P[\Delta_{out} \to \Delta_Y] = 2^{-c_{out}}$

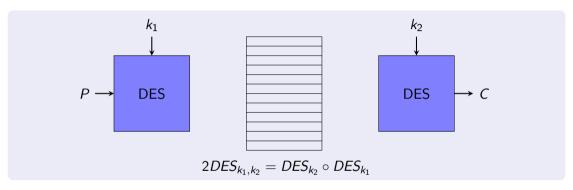

Main idea

Given $\alpha 2^{c_{in}} 2^p$ pairs with difference Δ_{in} , we expect on average α pairs following the differential in the middle rounds and thus the **right value** for $k_{in} \cup k_{out}$ should appear α times.

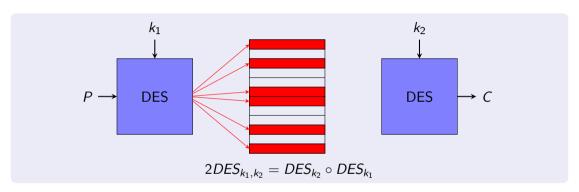
Given one pair of data, how to determine possible values for $k_{in} \cup k_{out}$?

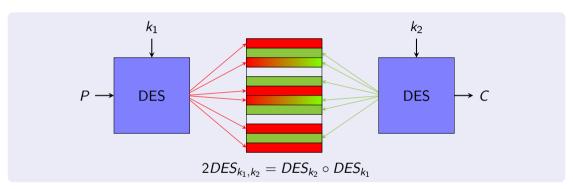


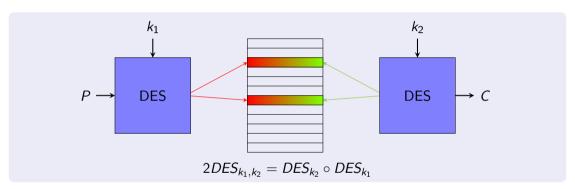
Differential Attack - Retrieving Key Candidates



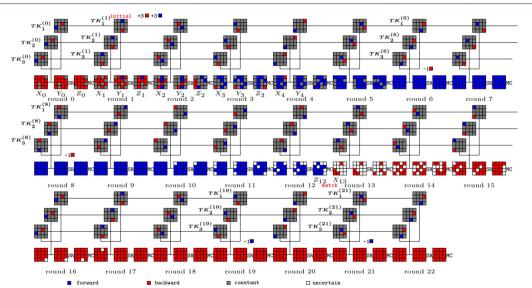
- Early abort technique
- Rebound-like procedure
- Knowing both input/output differences around an Sbox leads to the actual values
- Might be very complex depending on the key schedule and the cipher




• Initialize a Hash Table


- Initialize a Hash Table
- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$

- Initialize a Hash Table
- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$
- For all k_2 , look-up $M = DES_{k_2}^{-1}(C)$

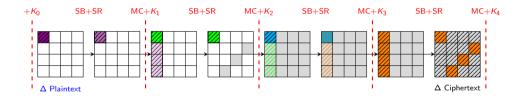


- Initialize a Hash Table
- For all k_1 , store $M = DES_{k_1}(P) \rightarrow k_1$
- For all k_2 , look-up $M = DES_{k_2}^{-1}(C)$

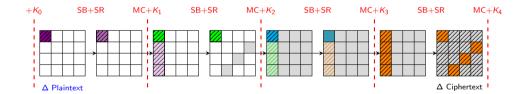
Time complexity $\approx 2^k$ encryptions, with 2k-bit keys!

More complicated (Dong et al., CRYPTO'21)

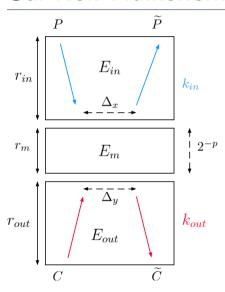
Differential and MitM



• Can we combine ideas from both differential and MitM attacks?

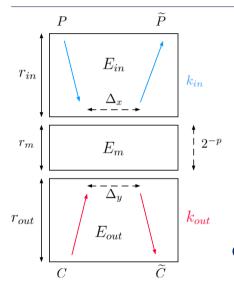

- Can we combine ideas from both differential and MitM attacks? Yes!
 - Consider plaintexts/states in structures
 - Differential Enumeration Technique (Demirci-Selçuk attacks)

Differential and MitM


- Can we combine ideas from both differential and MitM attacks? Yes!
 - Consider plaintexts/states in structures
 - Differential Enumeration Technique (Demirci-Selçuk attacks)

- Reduce complexities of MitM attacks
- Rely on truncated differential characteristics only

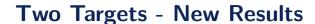
Our New Framework



Procedure:

- 1. Ask for one plaintext/ciphertext pair (P, C)
- 2. Construct the set of the $|k_{in}|$ possible plaintexts ${\cal P}$
- 3. Construct the set of the $|k_{out}|$ possible ciphertexts \mathcal{C}
- 4. Search for valid $(P', C') \in \mathcal{P} \times \mathcal{C}$ by looking for a collision

Procedure:


- 1. Ask for one plaintext/ciphertext pair (P, C)
- 2. Construct the set of the $|k_{in}|$ possible plaintexts \mathcal{P}
- 3. Construct the set of the $|k_{out}|$ possible ciphertexts C
- 4. Search for valid $(P', C') \in \mathcal{P} \times \mathcal{C}$ by looking for a collision

Pro:

- Much easier to deal with the key
- Specific improvement for ciphers with partial key addition

Con:

More memory than for classical differential attacks

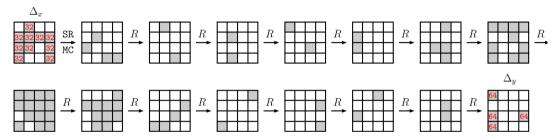
- **SKINNY-128-384:** First attack against 25 rounds in the single tweakey model!
- **AES-256**: First attack against 12 rounds requiring only 2 related keys!

Two Targets - New Results

- **SKINNY-128-384:** First attack against 25 rounds in the single tweakey model!
- **AES-256:** First attack against 12 rounds requiring only 2 related keys!

Seem to work well when the key size is larger than the block size

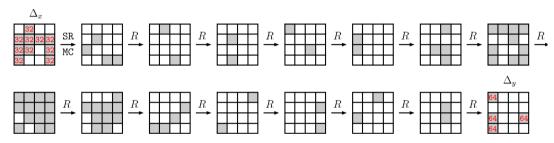
Two Targets - New Results


• **SKINNY-128-384**: First attack against 25 rounds in the single tweakey model!

# Rounds	Data	Time	Memory	Туре	Ref.
21	2^{123}	$2^{353.6}$	2 ³⁴¹	ID	Yang et al.
21	$2^{122.89}$	$2^{347.35}$	2^{336}	ID	Hadipour et al.
22	2^{96}	2 ^{382.46}	$2^{330.99}$	DS-MITM	Shi et al.
22	$2^{92.22}$	2 ^{373.48}	$2^{147.22}$	ID	Tolba et al.
23	2^{104}	2 ³⁷⁶	2 ⁸	MITM	Dong et al.
23	2^{117}	$2^{361.9}$	$2^{118.5}$	Diff. MITM	new
24	2^{117}	$2^{361.9}$	2 ¹⁸³	Diff. MITM	new
24	$2^{122.3}$	$2^{372.5}$	2 ^{123.8}	Diff. MITM	new
25	$2^{122.3}$	$2^{372.5}$	2 ^{188.3}	Diff. MITM	new

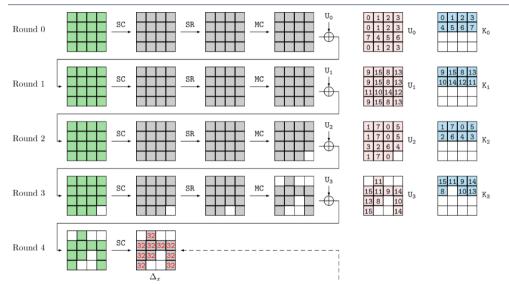
Differential on SKINNY-128

• For the 25-round attack, we use the following differential on 15 rounds:

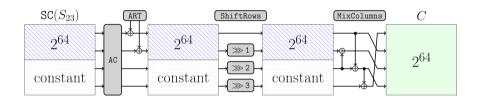


- CP model from Delaune et al. (2021) to estimate its probability: $2^{-p} \ge 2^{-116.5}$
 - Note that the best differential characteristic has probability 2^{-131}

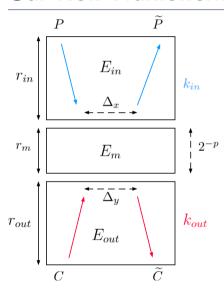
Differential on SKINNY-128


• For the 25-round attack, we use the following differential on 15 rounds:

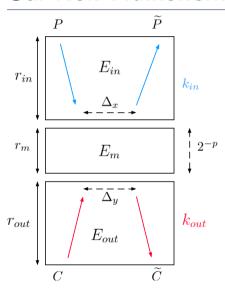
- CP model from Delaune et al. (2021) to estimate its probability: $2^{-p} \ge 2^{-116.5}$
 - Note that the best differential characteristic has probability 2^{-131}
- Extended by adding 4 rounds to the plaintext, 5 rounds to the ciphertext and one extra free round



4 rounds to the plaintext

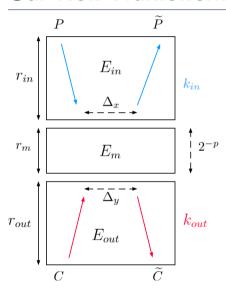


- The round key is only applied to the first two rows
- Consider structure of 2⁶⁴ plaintext/ciphertext pairs
- The attack is performed on the 2⁶⁴ pairs in parallel



Procedure:

- 1. Ask for one structure of 2^{64} plaintext/ciphertext pair (P, C)
- 2. Construct the set of the $|k_{in}|$ possible plaintexts ${\cal P}$
- 3. Construct the set of the $|k_{out}|$ possible ciphertexts ${\cal C}$
- 4. Search for valid $(P', C') \in \mathcal{P} \times \mathcal{C}$ by looking for a collision



Procedure: repeat 2^p times

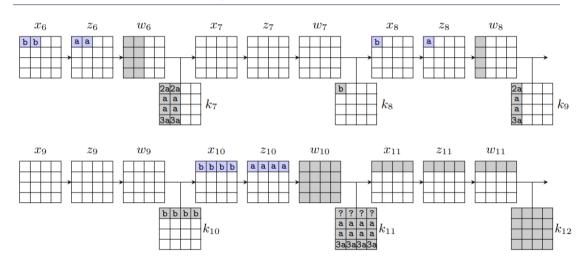
- 1. Ask for one structure of 2^{64} plaintext/ciphertext pair (P, C)
- 2. Construct the set of the $|k_{in}|$ possible plaintexts ${\cal P}$
- 3. Construct the set of the $|k_{out}|$ possible ciphertexts ${\cal C}$
- 4. Search for valid $(P', C') \in \mathcal{P} \times \mathcal{C}$ by looking for a collision

Procedure: repeat $2^p/2^{64}$ times

- 1. Ask for one structure of 2^{64} plaintext/ciphertext pair (P, C)
- 2. Construct the set of the $|k_{in}|$ possible pairs of plaintexts \mathcal{P}
- 3. Construct the set of the $|k_{out}|$ possible pairs of "ciphertexts" $\mathcal C$
- 4. Search for valid $((P,P'),(C,C')) \in \mathcal{P} \times \mathcal{C}$ by looking for a collision

Application to AES

• **AES-256:** First attack against 12 rounds requiring only 2 related keys!


Application to AES

- **AES-256**: First attack against 12 rounds requiring only 2 related keys!
- **ToSC 2023-4:** Related-key differential analysis of the AES, *C. Boura, P. Derbez, M. Funk*
 - MILP model dedicated to Diff-MitM against AES
 - New attack against 13 rounds requiring only 2 related keys!

Improvement - Song et al.

- New cryptanalysis technique: the Differential MITM attack
- More improvements described in the paper (e.g. data reduction)
- First attack against 25-round SKINNY-128-384 in the single tweakey model
- First attacks against 12 and 13 rounds of AES-256 with only two related keys
- Many open questions and future works:
 - When is this framework better than classical differential attacks?
 - Can this framework work with truncated differentials?
 - Can we combine MitM attacks with other cryptanalysis techniques?
 - ...

Conclusion

- New cryptanalysis technique: the Differential MITM attack
- More improvements described in the paper (e.g. data reduction)
- First attack against 25-round SKINNY-128-384 in the single tweakey model
- First attacks against 12 and 13 rounds of AES-256 with only two related keys
- Many open questions and future works:
 - When is this framework better than classical differential attacks?
 - Can this framework work with truncated differentials?
 - Can we combine MitM attacks with other cryptanalysis techniques?
 - ..

Thank you for your attention!